Superatoms. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Superatoms - Группа авторов страница 28
14 14 Wade, K. (1971). The structural significance of the number of skeletal bonding electron‐pairs in carboranes, the higher boranes and borane anions, and various transition‐metal carbonyl cluster compounds. Chem. Commun.: 792–793.
15 15 Wade, K. (1976). Structural and bonding patterns in cluster chemistry. Adv. Inorg. Chem. Radiochem. 18: 1–66.
16 16 Mingos, D.M.P. (1972). A general theory for cluster and ring compounds of the main group and transition elements. Nat. Phys. Sci. 236: 99–102.
17 17 Mingos, D.M.P. (1984). Polyhedral skeletal electron pair approach. Acc. Chem. Res. 17: 311–319.
18 18 Zintl, E., Goubeau, J., and Dullenkopf, W. (1931). Metals and alloys. I. Saltlikecompounds and intermetallic phases of sodium in liquid ammonia. Z. Phys. Chem. 154: 1–46.
19 19 Zintl, E. and Kaiser, H. (1933). Metals and alloys. VI. Ability of elements to form negative ions. Z. Anorg. Allgem. Chem. 211: 113–131.
20 20 Saito, S. and Ohnishi, S. (1987). Stable (Na19)2 as a giant alkali‐metal‐ atom dimer. Phys. Rev. Lett. 59: 190–193.
21 21 Gaussian 16 (2016). Revision C.01. Wallingford, CT: Gaussian, Inc.
22 22 Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett.77: 3865.
23 23 Sun, W.G., Wang, J.J., Lu, C. et al. (2017). Evolution of the structural and electronic properties of medium‐sized sodium clusters: a honeycomb‐like Na20 cluster. Inorg. Chem. 56: 1241–1248.
24 24 Hakkinen, H. and Manninen, M. (1996). How “magic” is a magic cluster? Phys. Rev. Lett. 76: 1599–1602.
25 25 Cheng, L., Zhang, X., Jin, B., and Yang, J. (2014). Superatom‐atom superbonding in metallic clusters: a new look to the mystery of an Au20 pyramid. Nanoscale 6: 12440–12444.
26 26 Wang, Z.W. and Palmer, R.E. (2012). Direct atomic imaging and dynamical fluctuations of the tetrahedral Au20 cluster. Nanoscale 4: 4947–4949.
27 27 Leuchtner, R.E., Harms, A.C., and Castleman, A.W. Jr. (1989). Thermal metal cluster anion reactions: behavior of aluminum clusters with oxygen. J. Chem. Phys. 91: 2753–2754.
28 28 Li, X., Wu, H., Wang, X.B., and Wang, L.S. (1998). s−p hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopic study. Phys. Rev. Lett. 81: 1909–1912.
29 29 Rao, B.K. and Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: a comprehensive analysis. J. Chem. Phys. 111: 1890.
30 30 Khanna, S.N. and Jena, P. (1994). Designing ionic solids from metallic clusters. Chem. Phys. Lett. 219: 479–483.
31 31 Zheng, W.‐J., Thomas, O.C., Lippa, T.P. et al. (2006). The ionic KAl13 molecule: a stepping stone to cluster assembled materials. J. Chem. Phys. 124: 144304–144305.
32 32 Bergeron, D.E., Castleman, A.W. Jr., Morisato, T., and Khanna, S.N. (2004). Formation of Al13I−: evidence for the superhalogen character of Al13. Science 304: 84–87.
33 33 Han, Y.K. and Jung, J. (2008). Does the “superatom” exist in halogenated aluminum clusters? J. Am. Chem. Soc. 130: 2–3.
34 34 Jung, J., Kim, H., and Han, Y.K. (2011). Can an electron‐shell closing model explain the structure and stability of ligand‐stabilized metal clusters? J. Am. Chem. Soc. 133: 6090–6095.
35 35 Liu, F., Mostoller, M., Kaplan, T. et al. (1996). Evidence for a new class of solids: first principles study of K(Al13). Chem. Phys. Lett. 248: 213.
36 36 Huang, C., Fang, H., Whetten, R., and Jena, P. (2020). Robustness of superatoms and their potential as building blocks of materials: Al13− vs B(CN)4−. J. Phys. Chem. C 124: 6435–6440.
37 37 Clayborne, P.A., Lopez‐Acevedo, O., Whetten, R.L. et al. (2011). The Al50Cp*12 cluster – A 138‐electron closed shell (L = 6) superatom. Eur. J. Inorg. Chem. 2011: 2649–2652.
38 38 Walter, M., Akola, J., Lopez‐Acevedo, O. et al. (2008). A unified view of ligand‐protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U. S. A. 105: 9157–9162.
39 39 Jadzinsky, P.D., Calero, G., Ackerson, C.J. et al. (2007). Structure of a thiol monolayer‐protected gold nanoparticle at 1.1 Å resolution. Science 318: 430–433.
40 40 Castleman, A.W. and Khanna, S.N. (2009). Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C 113: 2664–2675.
41 41 Claridge, S.A., Castleman, A.W., Khanna, S.N. et al. (2009). Cluster‐assembled materials. ACS Nano 3: 244–255.
42 42 Shafai, G., Hong, S., Bertino, M., and Rahman, T.S. (2009). Effect of ligands on the geometric and electronic structure of Au13 clusters. J. Phys. Chem. C 113: 12072–12078.
43 43 Zhang, Z.‐G., Xu, H.‐G., Feng, Y., and Zheng, W. (2010). Communications: investigation of the superatomic character of Al13 via its interaction with sulfur atoms. J. Chem. Phys. 132: 161103.
44 44 Gutsev, G.L. and Boldyrev, A.I. (1981). DVM‐Xα calculations on the ionization potentials of M Xk+1 − complex anions and the electron affinities of M Xk+1 “superhalogens”. Chem. Phys. 56: 277–283.
45 45 Gutsev, G.L. and Boldyrev, A.I. (1982). DVM Xα calculations on the electronic structure of “superalkali” cations. Chem. Phys. Lett. 92: 262–266.
46 46 Lievens, P., Thoen, P., Bouckaert, S. et al. (1999). Ionization potentials of LinO (2 < n < 70) clusters: experiment and theory. J. Chem. Phys. 110: 10316–10329.
47 47 Gutsev, G.L., Bartlett, R.J., Boldyrev, A.I., and Simons, J. (1997). Adiabatic electron affinities of small superhalogens: LiF2, LiCl2, NaF2, and NaCl2. J. Chem. Phys. 107: 3867–3875.
48 48 Bartlett, N. and Lohmann, D.H. (1962). Dioxygenyl hexafluoroplatinate (V), O2 + [PtF6] −. Proc. Chem. Soc., London 3: 115–116.
49 49 Bartlett, N. (1962). Xenon hexafluoroplatinate (V) Xe+ [PtF6] −. Proc. Chem. Soc., London 6: 218.
50 50 Giri, S., Behera, S., and Jena, P. (2014). Superalkalis and superhalogens as building blocks of supersalts. J. Phys. Chem. A 118: 638–645.
51 51 Koirala, P., Willis, M., Kiran, B. et al. (2010). Superhalogen properties of fluorinated coinage metal clusters. J. Phys. Chem. C 114: 16018–16024.
52 52 Willis, M., Götz, M., Kandalam, A.K. et al. (2010). Hyperhalogens: discovery of a new cass of highly electronegative species. Angew. Chem. Int. Ed. 49: 8966–8970.
53 53 Knight, D.A., Zidan, R., Lascola, R. et al. (2013). Synthesis, characterization, and atomistic modeling of stabilized highly pyrophoric Al(BH4)3 via the formation of the hypersalt K[Al(BH4)4]. J. Phys. Chem. C 117: 19905–19915.
54 54 Chen, G., Zhao, T., Wang, Q., and Jena, P. (2019). Rational design of stable dianions and the concept of superchalcogens. J. Phys. Chem. A 123: 5753–5761.
55 55 Pyykkö, P. and Runeberg, N. (2002). Icosahedral Wau12: a predicted closed‐shell species, stabilized by aurophilic attraction and relativity and in accord with the 18‐electron