Marine Mussels. Elizabeth Gosling

Чтение книги онлайн.

Читать онлайн книгу Marine Mussels - Elizabeth Gosling страница 58

Marine Mussels - Elizabeth Gosling

Скачать книгу

clear SFG advantage to explain the dominance of M. trossulus in cold habitats. As SST continues to warm due to climate change, the energetics of these three species provide a basis for developing mechanistic models8 predicting future distribution and productivity changes in mussel populations (Fly & Hilbish 2013).

      Montalto et al. (2016) used three interconnected models (climatic, biophysical and energetics) to estimate changes in growth, reproduction and mortality risk by 2050 for three commercially and ecologically important mussels (Brachidontes pharaonis, Mytilaster minimus and M. galloprovincialis) at 51 sites in the Mediterranean Sea. Helmuth et al. (2014) have cautioned that to focus solely on range limits may lead to failure to notice highly significant impacts that are both occurring now and will likely occur in the future. All three species inhabit intertidal habitats, and thus are affected by changes in both terrestrial and marine environments. They differ from one another in their thermal optima, performance breadth and lethal temperatures. Montalto et al. (2016) predicted highly variable responses (both positive and negative) in the timing of reproductive maturity and the risk of lethality among the species and sites that do not conform to simple latitudinal gradients, which would be undetectable by methods focused only on lethal limits and/or range boundaries. Also, results strongly suggest that the three species will likely experience changes in the timing of reproductive maturity, and that in intertidal zones thermal stress may cause changes to the risk of mortality. However, these consequences are highly species‐ and site‐specific in ways that do not always conform to simple latitudinal gradients, and in some cases reveal potential benefits for Mediterranean Sea ecosystems.

      Apart from the impact on mussel biogeographic distribution and physiological traits already discussed, there is evidence that global warming can impact on: interspecific (Petes et al. 2007) and predator–prey (Freitas et al. 2007; Broitman et al. 2009; Menge et al. 2008; Harley 2011; Kordas et al. 2011; Monaco et al. 2016; Torossian et al. 2020) interactions; reproductive timing and larval dispersal (Carson et al. 2010); the immune response (Matozzo & Marin 2011; Beaudry et al. 2016; Hernroth & Baden 2018); byssal thread strength (Newcomb et al. 2019); developmental instability (Nishizaki et al. 2015); species invasion success (US EPA 2008; Occhipinti‐Ambrogi & Galil 2010; Firth et al. 2011; Somero 2010, 2011; Thyrring et al. 2017); mussel culture (Guyondet et al. 2015; Steeves et al. 2018; Silva et al. 2017; Filgueira et al. 2016; Callaway et al. 2012); and radiation‐induced damage (Dallas et al. 2016).

      Ocean Acidification

Schematic illustration of ocean acidification (OA). The reaction between dissolved carbon dioxide (CO2) and water results in an increase in the concentration of hydrogen ions (H+); additional changes include an increase in bicarbonate ions (HCO3-) and a great decrease in carbonate ions (CO32-).

      Source: From Birchenough et al. (2017). Open Government Licence v3.0.

      Dupont & Pörtner (2013) reviewed a selection of papers covering a range of experimental approaches used to investigate the impact of OA on marine species and ecosystems. They found that while the vast majority of studies (>90%) on the potential effects of OA were laboratory‐based, there were a few field studies using natural gradients or CO2‐rich

Скачать книгу