Physikalische Chemie. Peter W. Atkins
Чтение книги онлайн.
Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 139
Abb. 4.11 Phasendiagramm von Helium (4He). Die λ‐Linie kennzeichnet die Bedingungen, bei denen beide flüssigen Phasen im Gleichgewicht vorliegen. Helium‐II ist die suprafluide Phase. Festes Helium kann man erst bei Drücken oberhalb von 20 bar gewinnen. Die Bezeichnungen hcp (von engl. hexagonally close‐packed; hexagonal dichte Packung) und bcc (von engl. body‐centered cubic; kubisch raumzentriert) stehen für feste Phasen mit unterschiedlicher Kristallstruktur (diese Strukturen werden in Abschn. 15.1 beschrieben). Der Pfad zwischen den Punkten ABCD wird in Illustration 4.8 diskutiert.
Abb. 4.12 Die Wärmekapazität von suprafluidem Helium‐II steigt mit der Temperatur umso stärker an, je näher man sich der Übergangstemperatur zu Helium‐I annähert. Aufgrund des Verlaufs des Graphen in dieser Auftragung hat sich die Bezeichnung λ‐Übergang durchgesetzt; die Phasengrenze zwischen den beiden flüssigen Phasen im Phasendiagramm nennt man λ‐Linie.
Reines 4He besitzt zwei flüssige Phasen. Eine von ihnen (im Diagramm mit He‐I) bezeichnet) verhält sich wie eine gewöhnliche Flüssigkeit, die andere (He‐II) ist ein Suprafluid (ihre Viskosität ist null). Neuere Forschungsarbeiten deuten darauf hin, dass auch Wasser eine suprafluide Phase haben könnte. Abgesehen von den in Anwendung 8: „Materialwissenschaft – Flüssigkristalle“ am Ende von Abschn. 5.3 vorgestellten Flüssigkristallen ist Helium der einzige Stoff mit einem Phasenübergang zwischen zwei flüssigen Phasen; in Abb. 4.11 ist die zugehörige Phasengrenze, die λ‐Linie (Lambda‐Linie), gekennzeichnet. Sie wird so bezeichnet, da eine Auftragung der Wärmekapazität von 4He gegen die Temperatur bei der Übergangstemperatur an die Gestalt des griechischen Buchstabens Lambda erinnert (Abb. 4.12).
Das Phasendiagramm von 3He ist anders aufgebaut, aber auch von diesem Isotop kennt man eine suprafluide Phase. Eine weitere ungewöhnliche Eigenschaft ist, dass am Schmelzpunkt die Entropie der Flüssigkeit größer ist als die des Festkörpers und der Schmelzvorgang daher exotherm verläuft (ΔSmH < 0 wegen ΔSmS = ΔSmH/TSm).
Illustration 4.8
Betrachten Sie den in Abb. 4.11 eingezeichneten Pfad zwischen den Punkten ABCD. Am Punkt A liegt Helium als Gas vor. Eine Abkühlung des Gases bis zum Punkt B führt zur Kondensation zu flüssigem Helium‐I, und bei noch geringeren Temperaturen bis zum Punkt C zur Bildung von flüssigem Helium‐II. Wenn sich der Druck und die Temperatur von Punkt D einstellen, liegen in dem System drei Phasen (Helium‐I, Helium‐II, und gasförmiges Helium) im Gleichgewicht vor.
Anwendung 6: 4.1 Technologie – Überkritische Fluide
Überkritisches Kohlendioxid, abgekürzt scCO2 (von engl. supercritical), kommt bei immer mehr Prozessen als Lösungsmittel zur Anwendung. Sein kritischer Druck (72,9 atm) und seine kritische Temperatur (304,2 K oder 31,0 °C) sind technisch gut erreichbar, die Substanz ist billig und lässt sich problemlos wiederverwerten. Die Dichte von CO2 am kritischen Punkt beträgt 0,45 g cm−3. Die Transporteigenschaften (Diffusionsverhalten, Viskosität, Wärmeleitfähigkeit) überkritischer Fluide hängen entscheidend von ihrer Dichte ab, die ihrerseits empfindlich auf Druck‐ und Temperaturänderungen reagiert. Auf diese Weise lässt sich die Dichte von scCO2 zwischen 0,1 g cm−3 (gasähnlich) und 1,2 g cm−3 (flüssigkeitsähnlich) einstellen. Als Faustregel gilt, dass die Löslichkeit eines zu lösenden Stoffs exponentiell von der Dichte des überkritischen Lösungsmittels abhängt. Kleine Druckänderungen, insbesondere in der Umgebung des kritischen Punkts, können die Löslichkeit deshalb stark beeinflussen. Da auch die relative Permittivität (Dielektrizitätskonstante) eines überkritischen Fluids empfindlich von Druck und Temperatur abhängt, kann man Reaktionen unter polaren und unpolaren Bedingungen durchführen, ohne dabei das Lösungsmittel wechseln zu müssen; auf diese Weise lassen sich Lösungsmitteleinflüsse untersuchen.
Zu den wichtigen Vorteilen von überkritischem scCO2 zählt, dass es sich nach Gebrauch aus dem System entfernen lässt, ohne schädliche Rückstände zurückzulassen. Diese Tatsache (gemeinsam mit der niedrigen kritischen Temperatur) empfiehlt das Lösungsmittel besonders für die Nahrungsmittelindus trie (zum Beispiel zum Entkoffeinieren von Kaffee oder Entfetten von Milch) und die Arzneimittelherstellung. Zunehmend verwendet man scCO2 auch in der chemischen Reinigung als Ersatz für krebserregende, umweltschädliche chlorierte Kohlenwasserstoffe.
Seit den 1960er Jahren wird scCO2 als mobile Phase in der Flüssigkeitschromatografie mit überkritischen Fluiden (engl. supercritical fluid chromatography, SFC) eingesetzt. Dieses Verfahren wurde zwischenzeitlich weitgehend von der bequemeren Hochleistungs‐Flüssigkeitschromatografie (engl. high performance liquid chromatography, HPLC) verdrängt, findet aber neuerdings wieder Interesse, weil sich damit auch Trennungsaufgaben lösen lassen, die der HPLC Schwierigkeiten bereiten (beispielsweise die Trennung von Lipiden und Phospholipiden). Auf diese Weise lassen sich Probenmengen bis in den Piktogramm‐Bereich analysieren. Der entscheidende Vorteil der SFC besteht darin, dass die Diffusionskoeffizienten in überkritischen Fluiden um eine Größenordnung über denjenigen in gewöhnlichen Flüssigkeiten liegen; der Diffusion des gelösten Stoffs durch die chromatografische Säule wird deswegen weniger Widerstand entgegen gesetzt, die Stofftrennung wird beschleunigt oder die Auflösung des Verfahrens steigt.
Leider ist überkritisches CO2 kein besonders gutes Lösungsmittel. Viele potenziell interessante Substanzen lassen sich nur mithilfe oberflächenaktiver Hilfsmittel in Lösung bringen. Die Wirtschaftlichkeit von Reinigungsverfahren auf scCO2‐Basis hängt daher von der Verfügbarkeit preiswerter Tenside ab; ähnliches gilt für den Einsatz von scCO2 als Lösungsmittel für homogene Katalysatoren (wie Metallkomplexe). Bislang gibt es zwei Ansätze, um diesem Problem zu begegnen: Die Anwendung fluorierter und siloxanbasierter polymerer Stabilisatoren ermöglicht den Ablauf von Polymerisationen in scCO2. Da diese Hilfsstoffe für den kommerziellen Einsatz zu teuer sind, greift man neuerdings auf die wesentlich billigeren Poly(ether‐carbonat)‐Copolymere zurück, deren Löslichkeit in scCO2 durch Veränderung des Verhältnisses zwischen Ether‐ und Carbonatgruppen beeinflusst werden kann.
Die kritischen Parameter von Wasser sind 374 °C und 218 atm – Bedingungen also, die technisch anspruchsvoller sind als im Fall von scCO2. Auch hier hängen die Eigenschaften des Fluids empfindlich vom Druck ab: Bei abnehmender Dichte von scH2O verhält sich das Medium nicht mehr wie eine wässrige Lösung, sondern wie eine nichtwässrige und schließlich wie eine gasförmige Lösung. Eine Folge ist, dass sich Reaktionsmechanismen verschieben, etwa von ionischen zu radikalischen Reaktionen.
Schlüsselkonzepte
1 1. Eine Phase ist eine Probe einer Substanz mit durchgehend homogener Zusammensetzung und gleichförmigem physikalischen Zustand.
2 2. Ein Phasenübergang ist die spontane Umwandlung einer Phase