High-Density and De-Densified Smart Campus Communications. Daniel Minoli

Чтение книги онлайн.

Читать онлайн книгу High-Density and De-Densified Smart Campus Communications - Daniel Minoli страница 26

High-Density and De-Densified Smart Campus Communications - Daniel  Minoli

Скачать книгу

of bits that described the “color” of the BSS. The color of a BSS corresponds to an identifier (ID) of the BSS that is shorter than the Basic Service Set Identifier (BSSID) defined by 802.11. The BSS color may be contained in the PHY Signal (SIG) field in a PHY header of a PPDU, whereas the BSSID is typically included in a MAC portion of PPDUs. A device (e.g. an AP or client) in a BSS can determine whether a PPDU is from the BSS to which the device belongs (the “same‐BSS”) or some other BSS (e.g. an overlapping BSS [OBSS]), by decoding the SIG field and interpreting BSS color bits included therein [6].

      Machine To Machine (M2M) communication technology has been discussed as a next‐generation communication technology. The technological standard for supporting M2M communication in an IEEE 802.11 WLAN system has been developed as IEEE 802.11ah (other standards or recommendations have been advanced by ETSI). Regarding M2M communication, a scenario of occasionally communicating a small amount of data at low speed in an environment in which numerous devices are present is considered. Communication in a WLAN system is performed in a medium shared by all devices. When the number of devices is increased like M2M communication, there is a need to enhance a channel access mechanism more effectively to reduce unnecessary power consumption and interference [15].

      2.3.2 MAC Layer Operation

      IEEE 802.11 defines a data frame exchange process that enables the stations and APs, to negotiate the timing of the exchange of data between devices over the various shared channels in the 2.4 and 5 GHz bands. In WLAN systems using the IEEE 802.11 standards, frames exchanged between stations (including APs) are classified into management frames, control frames, and data frames. The management frame is a frame used for exchanging management information that is not forwarded to higher layers of a communication protocol stack. The control frame is a frame used for controlling access to the transmission medium. The data frame is a frame used for transmitting data that will be forwarded to higher layers of the communication protocol stack [2]. Each frame's type and subtype are identified using a type field and a subtype field included in a control field of the frame, as described in the applicable standard.

      Clearly, data are transmitted using MAC framing and channel management mechanisms along with PHY resources. As alluded to earlier, at the MAC layer, the following frames are utilized:

       A data frame is used for the transmission of data forwarded to a higher protocol layer. The WLAN device transmits the data frame after performing backoff if a Distributed Coordination Function (DCF) Inter‐Frame Space (IFS) (known as DIFS) interval has elapsed, during which such DIFS interval, the medium has been idle.

       A management frame is used for exchanging management information that is not forwarded to a higher protocol layer. Subtype frames of the management frame include a beacon frame, an association request/response frame, a probe request/response frame, and an authentication request/response frame.

       A control frame is used for controlling access to the medium. Subtype frames of the control frame include a RTS frame, a CTS frame, and an ACK frame.

      IFSs are waiting periods between transmission of frames operating in the MAC sublayer. These waiting periods are used to prevent collisions as defined in IEEE 802.11‐based WLAN standards; they represent the time period between completion of the transmission of the last frame and starting transmission of the next frame, apart from the variable backoff period. These are techniques used to prevent collisions as defined in IEEE 802.11‐based WLAN standard. Specifically, IFS is the time period between the completion of the transmission of the last frame and the start of transmission of the next frame, apart from the variable backoff period [16]. The list that follows enumerates the different types of IFSs starting from the shortest duration (highest priority) to the longest duration (lowest priority):

       Reduced Inter‐frame Space (RIFS)

       Short Inter‐frame Space (SIFS)

       Point Coordination Function (PCF) Inter‐frame Space (PIFS)

       Distributed Coordination Function (DCF) Inter‐frame Space (DIFS)

       Arbitration Inter‐frame Space (AIFS)

       Extended Inter‐frame Space (EIFS)

Inter‐frame Space Type Description
Inter‐frame Space (IFS) The time period between completion of

Скачать книгу