Change Detection and Image Time-Series Analysis 1. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Change Detection and Image Time-Series Analysis 1 - Группа авторов страница 18

Change Detection and Image Time-Series Analysis 1 - Группа авторов

Скачать книгу

      Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

      Saha, S., Bovolo, F., Bruzzone, L. (2019). Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3677–3693.

      Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003 [Online]. Available at: https://doi.org/10.1080/01431168908903939.

      Song, X.P., Hansen, M.C., Stehman, S.V., Potapov, S.V., Tyukavina, A., Vermote, E.F., Townshend, J.R. (2018). Global land change from 1982 to 2016. Nature, 560, 639–643.

      Tong, X., Pan, H., Liu, S., Li, B., Luo, X., Xie, H., Xu, X. (2020). A novel approach for hyperspectral change detection based on uncertain area analysis and improved transfer learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2056–2069.

      Wang, X., Liu, S., Du, P., Liang, H., Xia, J., Li, Y. (2018). Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning. Remote Sensing, 10(2) [Online]. Available at: https://www.mdpi.com/2072-4292/10/2/276.

      Wei, C., Zhao, P., Li, X., Wang, Y., Liu, F. (2019). Unsupervised change detection of VHR remote sensing images based on multi-resolution Markov random field in wavelet domain. International Journal of Remote Sensing, 40(20), 7750–7766 [Online]. Available at: https://doi.org/10.1080/01431161.2019.1602792.

      Wu, Z., Hu, Z., Fan, Q. (2012). Superpixel-based unsupervised change detection using multi-dimensional change vector analysis and SVM-based classification. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-7, 257–262 [Online]. Available at: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-7/257/2012/.

      Zanetti, M., Bovolo, F., Bruzzone, L. (2015). Rayleigh–Rice mixture parameter estimation via EM algorithm for change detection in multispectral images. IEEE Transactions on Image Processing, 24(12), 5004–5016.

      Zhang, W., Lu, X., Li, X. (2018). A coarse-to-fine semi-supervised change detection for multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 56(6), 3587–3599.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7R6oUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAACUcAgAAAgAA HAJQAAxTYW1pIE1lbmFzY2UcAgUACExheW91dCAxADhCSU0EJQAAAAAAELX3qB9z4ksiHblsoQqR Gig4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3ByaW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEA AAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAAD3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3By aW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYA IABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJv b2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRp b25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9v bAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAA AEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAA AAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiN

Скачать книгу