Small Animal Laparoscopy and Thoracoscopy. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Small Animal Laparoscopy and Thoracoscopy - Группа авторов страница 40

Small Animal Laparoscopy and Thoracoscopy - Группа авторов

Скачать книгу

the variable‐angle rigid scopes by providing an optimal alternative to circumvent the visual impediments of lung expansion during thoracoscopy when one‐lung ventilation is not feasible [10]. This study reveals that the use of an ENDOCAMELEON® significantly shortens exploratory thoracoscopic procedures, compared to the use of a standard fixed 30° angle telescope, while ventilating both lungs. The variable‐angle lens was also found to minimize iatrogenic injuries due to reduced maneuvering in the cavity compared to standard scopes [10–12].

      Although fluorescence specific scopes exist (see next section on fluorescence imaging), the standard scopes can also be used, by adding a “snap‐on” dedicated filter between the ocular of the scope and the camera head lens, thus filtering the image to make visible the specific desired wavelengths. The subtracted light is eliminated from the picture, and a specific contrast obtained for the final image displayed on the screen. However, it is highly suggested for routine work with NIR that NIR‐dedicated scopes with integral filters be used since the snap‐on filters do not provide the same quality.

      Using a telescope and instruments of the same diameter (i.e., 5 mm) is convenient for maximum flexibility during surgery and allows for exchanging location of the telescope and instruments during a procedure without exchanging ports [1–5, 9]. Nevertheless, trocar cannula can be fitted with a reducer to accommodate smaller diameter instrumentation without loss of pneumoperitoneum [9].

      The development and adoption by surgeons of smaller diameter endoscopes has resulted in the detail provided by full HD miniature laparoscopy and the increasing trend toward needlescopy and associated instrumentation sets. That stated, miniature laparoscopy and needlescopy techniques make use of any rigid scope with a diameter equal to or smaller than 3.3 mm. The most common scope range used in clinical practice includes the 2.0, 2.4, 2.7, 3.0, and 3.3 mm. Therefore, the instrumentation varies from 2.0 to 3.5 mm. These scope lengths range from 14 to 25 cm allowing complete surgical access to deeper anatomic structures, even in medium‐sized patients.

      Despite the wide range of smaller scopes available on the market, the most common choices for surgical procedures in dogs and cats are 2.4 mm × 18 cm × 30°, 2.7 mm × 18 cm × 30°, and the 3.0 mm × 14 cm × 0°. For those scopes, the trocar diameter ranges from 2.5 to 3.9 mm according to the size and accessory instruments.

      The increasing demand for more advanced and complex procedures, which lead many surgeons to choose a VALS (video‐assisted laparoscopic surgery) or VATS (video‐assisted thoracic surgery) approach, has also resulted in the increasing use of exoscopes. An exoscope vastly improves visibility without occupying space inside the cavity being operated and also offers magnification abilities that provide up to 26 times the real structures' dimensions. The ergonomics and extended possibilities of exoscopes in combination with fluorescence technologies or 3D imaging put these surgical aids among the top requested trends, both in open and endoscopic‐assisted surgical procedures. The standard exoscope is 10 mm in diameter and 11 cm long and has high‐powered special illumination components. A 90° angle of view exoscope is available, which interferes as little as possible with the surgeon's instrumentation and range of motion, when enhanced ergonomics are desired. Special fluorescence technology exoscopes exist as well, which help map either vascular or neoplastic tissues, thus enabling the surgeon to identify the safest surgical margins.

      Although Xenon light sources have been considered high‐end medical technology for almost a decade, LED technology is taking over as the standard. For LED light sources the brightness, clarity, and high color temperature provide true color accuracy. The condition and quality of light‐transmitting cables, cleanliness of lens surfaces, light sensitivity of the camera, and monitor type also contribute to image brightness and quality, as explained earlier in the imaging‐chain section of this chapter [1–5, 8,13–16].

      Xenon technology is still sometimes required for special purposes such as fluorescence imaging as detailed further in the text below. When Xenon units are necessary, the range in power varies from 100 to 300 W. The wattage of a light source is not necessarily indicative of its brightness but reflects the energy required to power it. This does not directly correlate to its output, which is measured in lumens. As a result, wattage alone is not valid for comparison of light sources of different types. For example, an LED 150 W light source emits the amount of light similar to a 175 W xenon light source [1–5].

Photo depicts new-generation electronic LED cold light source CO2mbi LED.

      Source: © KARL STORZ SE & Co. KG, Germany.

      When selecting a light source for multidisciplinary endoscopy services, including flexible endoscopy, one must consider the compatibility of the light source with the flexible endoscope connector. Flexible endoscopes for G.I. use typically have a connector with two male parts: the light post and a smaller diameter pipe that connects to an internal pump for insufflation and irrigation. Although the initial cost of a versatile, high‐power LED light source may be high, it could represent considerable savings later, minimizing the need for multiple dedicated units for different purposes.

      It is important to consider the potential of some light sources to be converted to multidisciplinary use by applying specific adapters, so they fit the connections required for videogastroscopes. Insufflation can be provided by an external pump which may also support aspiration and irrigation.

      When not in use, the light source should always be in standby mode or completely turned off (by pressing a preset camera head button), to avoid any thermal injuries to the patient or risk burning the surgical drapes [1–5, 7, 8].

Photo depicts a unique state-of-the-art light source combining LED white light and NIR/ICG modes for clinical applications – POWER LED RUBINA.

      Source: © KARL STORZ SE & Co. KG, Germany.

       Silent work: since there are LED bulbs in the light source, there is no need for active fan cooling or

Скачать книгу