Small Animal Laparoscopy and Thoracoscopy. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Small Animal Laparoscopy and Thoracoscopy - Группа авторов страница 64

Small Animal Laparoscopy and Thoracoscopy - Группа авторов

Скачать книгу

Black (15 mm Port) 4, 4.5, 5 mm 1.75, 2, 2.25 mm Extra‐thick

      1 1 Dubiel, B., Shires, P.K., Korvick, D., and Chekan, E.G. (2010). Electromagnetic energy sources in surgery. Vet. Surg. 39 (8): 913.

      2 2 d’Arsonval, M.A. (1891). Action physiologique des courants alternatifs. CR Soc. Biol. 43: 283–286.

      3 3 Huhn, J.C. (2011). Stapling and energy devices for endoscopic surgery. In: Small Animal Endoscopy, 3e (eds. T.R. Tams and C.A. Rawlings), 365. St. Louis: Elsevier.

      4 4 Wang, K. and Advincula, A.P. (2007). “Current thoughts” in electrosurgery. Int. J. Gynaecol. Obstet. 97 (3): 245–250.

      5 5 Taheri, A., Mansoori, P., Sandoval, L.F. et al. (2014). Electrosurgery: part I. Basics and principles. J. Am. Acad. Dermatol. 70 (4): 591.

      6 6 Hanrath, M. and Rodgerson, D.H. (2002). Laparoscopic cryptorchidectomy using electrosurgical instrumentation in standing horses. Vet. Surg. 31 (2): 117–124.

      7 7 Toombs, J.P. and Crowe, D.T. (1985). Operative techniques. In: Textbook of Small Animal Surgery, 1e (ed. D. Slatter), 310–334. Philadelphia: WB Saunders.

      8 8 Lee, J. (2002). Update on electrosurgery. Outpatient Surg. 2 (2): 44–53.

      9 9 Feldman, L.S., Fuchshuber, P.R., and Jones, D.B. (2012). The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE). New York: Springer.

      10 10 Thompson, S.E. and Potter, L. (1999). Electrosurgery, lasers, and ultrasonic energy. In: Veterinary Endosurgery (ed. L.J. Freeman), 61–72. St. Louis: Mosby.

      11 11 Massarweh, N.N., Cosgriff, N., and Slakey, D.P. (2006). Electrosurgery: history, principles, and current and future uses. J. Am. Coll. Surg. 202 (3): 520–530.

      12 12 Spivak, H., Richardson, W.S., and Hunter, J.G. (1998). The use of bipolar cautery, laparosonic coagulating shears, and vascular clips for hemostasis of small and medium‐sized vessels. Surg. Endosc. 12 (2): 183–185.

      13 13 Phillips, C.K., Hruby, G.W., Durak, E. et al. (2008). Tissue response to surgical energy devices. Urology 71 (4): 744–748.

      14 14 Hruby, G.W., Marruffo, F.C., Durak, E. et al. (2007). Evaluation of surgical energy devices for vessel sealing and peripheral energy spread in a porcine model. J. Urol. 178 (6): 2689–2693.

      15 15 Carbonell, A.M., Joels, C.S., Kercher, K.W. et al. (2003). A comparison of laparoscopic bipolar vessel sealing devices in the hemostasis of small‐, medium‐, and large‐sized arteries. J. Laparoendosc. Adv. Surg. Tech. 13 (6): 3773–3780.

      16 16 Harold, K.L., Pollinger, H., Matthews, B.D. et al. (2003). Comparison of ultrasonic energy, bipolar thermal energy, and vascular clips for the hemostasis of small‐, medium‐, and large‐sized arteries. Surg. Endosc. 17 (8): 1228–1230.

      17 17 Newcomb, W.L., Hope, W.W., Schmelzer, T.M. et al. (2009). Comparison of blood vessel sealing among new electrosurgical and ultrasonic devices. Surg. Endosc. 23 (1): 90–96.

      18 18 Sindram, D., Martin, K., Meadows, J.P. et al. (2011). Collagen‐elastin ratio predicts burst pressure of arterial seals created using a bipolar vessel sealing device in a porcine model. Surg. Endosc. 25 (8): 2604–2612.

      19 19 Mayhew, P.D., Culp, W.T., Pascoe, P.J. et al. (2012). Use of the ligasure vessel‐sealing device for thoracoscopic peripheral lung biopsy in healthy dogs. Vet. Surg. 41 (4): 523–528.

      20 20 Barrera, J.S. and Monnet, E. (2012). Effectiveness of a bipolar vessel sealant device for sealing uterine horns and bodies from dogs. Am. J. Vet. Res. 73 (2): 302–305.

      21 21 Risselada, M., Ellison, G.W., Bacon, N.J. et al. (2010). Comparison of 5 surgical techniques for partial liver lobectomy in the dog for intraoperative blood loss and surgical time. Vet. Surg. 39 (7): 856–862.

      22 22 Brdecka, D.J., Rawlings, C.A., Perry, A.C. et al. (2008). Use of an electrothermal, feedback‐controlled, bipolar sealing device for resection of the elongated portion of the soft palate in dogs with obstructive upper airway disease. J. Am. Vet. Med. Assoc. 233 (8): 1265–1269.

      23 23 Landman, J., Kerbl, K., Rehman, J. et al. (2003). Evaluation of a vessel sealing system, bipolar electrosurgery, harmonic scalpel, titanium clips, endoscopic gastrointestinal anastomosis vascular staples and sutures for arterial and venous ligation in a porcine model. J. Urol. 169 (2): 697–700.

      24 24 Lamberton, G.R., Hsi, R.S., Jin, D.H. et al. (2008). Prospective comparison of four laparoscopic vessel ligation devices. J. Endourol. 22 (10): 2307–2312.

      25 25 Gardeweg, S., Bockstahler, B., and Dupré, G. (2019). Effect of multiple use and sterilization on sealing performance of bipolar vessel sealing devices. PLoS One 14 (8): e0221488. https://doi.org/10.1371/journal.pone.0221488.

      26 26 Blake, J.S., Trumpatori, B.J., Mathews, K.G. et al. (2017). Carotid artery bursting pressure and seal time after multiple uses of a vessel sealing device. Vet. Surg. 46 (4): 501–506.

      27 27 Kuvaldina, A., Hayes, G., Sumner, J. et al. (2018). Influence of multiple reuse and resterilization cycles on the performance of a bipolar vessel sealing device (LigaSure) intended for single use. Vet. Surg. 47 (7): 951–957.

      28 28 Matz, B.M., Tillson, D.M., Boothe, H.W. et al. (2014). Effect of vascular seal configuration using the LigaSure on arterial challenge pressure, time for seal creation, and histologic features. Vet. Surg. 43 (6): 761–764.

      29 29 Santini, M., Vicidomini, G., Baldi, A. et al. (2006). Use of an electrothermal bipolar tissue sealing system in lung surgery. Eur. J. Cardiothorac. Surg. 29 (2): 226–230.

      30 30 Marvel, S. and Monnet, E. (2013). ex vivo evaluation of canine lung biopsy techniques. Vet. Surg. 42 (4): 473–477.

      31 31 Valenzano, D., Hayes, G., Gludish, D. et al. (2019). Performance and microbiological safety testing after multiple use cycles and hydrogen peroxide sterilization of a 5‐mm vessel‐sealing device. Vet. Surg. 48 (5): 885–889.

      32 32 Quitzan, J.G., Singh, A.S., Beaufrere, H. et al. (2020). Evaluation of the performance of an endoscopic 3‐mm electrothermal bipolar vessel sealing device intended for single use after multiple use‐and‐resterilization cycles. Vet. Surg. 49: O120–O130.

      33 33 Lubner, M.G., Brace, C.L., Hinshaw, J.L. et al. (2010). Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21: S192–S203.

      34 34 Skinner, M.G., Iizuka, M.N., Kolios, M.C. et al. (1998). A theoretical comparison of energy sources‐microwave, ultrasound, and laser‐for interstitial thermal therapy. Phys. Med. Biol. 43: 3535–3547.

      35 35 Wright, A.S., Sampson, L.A., Warner, T.F. et al. (2005). Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 236: 132–139.

      36 36 Yang, T., Case, J.B., Boston, S. et al. (2017). Microwave ablation for treatment of hepatic neoplasia in five dogs. J. Am. Vet. Med. Assoc. 250 (1): 79–85.

      37 37 Oramas, A., Case, J.B., Toskich, B.B. et al. (2019). Laparoscopic access to the liver and application of laparoscopic

Скачать книгу