Small Animal Laparoscopy and Thoracoscopy. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Small Animal Laparoscopy and Thoracoscopy - Группа авторов страница 71

Small Animal Laparoscopy and Thoracoscopy - Группа авторов

Скачать книгу

307–314.

      44 44 McClaran, J.K., Skerrett, S.C., Currao, R.L. et al. (2017). Comparison of laparoscopic‐assisted technique and open laparotomy for gastrointestinal biopsy in cats. Vet. Surg. 46 (6): 821–828.

      45 45 Ko, J., Jeong, J., Lee, S. et al. (2018). Feasibility of single‐port retroperitoneoscopic adrenalectomy in dogs. Vet. Surg. 47 (S1): O75–O83.

      46 46 Wright, T., Singh, A., Mayhew, P.D. et al. (2016). Laparoscopic‐assisted splenectomy in dogs: 18 cases (2012–2014). J. Am. Vet. Med. Assoc. 248 (8): 916–922.

      47 47 Mayhew, P.D., Sutton, J.S., Singh, A. et al. (2018). Complications and short‐term outcomes associated with single‐port laparoscopic splenectomy in dogs. Vet. Surg. 47 (S1): O67–O74.

      48 48 Luckring, E.J., Ham, K., Adin, C.A. et al. (2016). Laparoscopic placement and urodynamic effects of an artificial urethral sphincter in cadaveric dogs. Vet. Surg. 45 (S1): O20–O27.

      49 49 Stiles, M., Case, J.B., and Coisman, J. (2016). Elective gastropexy with a reusable single‐incision laparoscopic surgery port in dogs: 14 cases (2012–2013). J. Am. Vet. Med. Assoc. 249 (3): 299–303.

      50 50 Gandini, M. and Giusto, G. (2016). Laparoscopic single‐port ovariectomy and gastropexy in dogs. Schweiz. Arch. Tierheilkd. 158 (11): 755–758.

      51 51 Baron, J.K., Casale, S.A., Monnet, E. et al. (2020). Paramedian incisional complications after prophylactic laparoscopy‐assisted gastropexy in 411 dogs. Vet. Surg. 49 (Suppl 1): O148–O155.

      52 52 Coleman, K.A., Adams, S., Smeak, D.D., and Monnet, E. (2016). Laparoscopic gastropexy using knotless unidirectional suture and an articulated endoscopic suturing device: seven cases. Vet. Surg. 45 (S1): O95–O101.

      53 53 Scott, J., Singh, A., Mayhew, P.D. et al. (2016). Perioperative complications and outcome of laparoscopic cholecystectomy in 20 dogs. Vet. Surg. 45 (S1): O49–O59.

      54 54 Simon, A. and Monnet, E. (2020). Laparoscopic cholecystectomy with single port access system in 15 dogs. Vet. Surg. 49 (Suppl 1): O156–O162.

      55 55 Lovell, S., Singh, A., Zur Linden, A. et al. (2019). Gallbladder leiomyoma treated by laparoscopic cholecystectomy in a dog. J. Am. Vet. Med. Assoc. 255 (1): 85–89.

      56 56 Hart, E., Singh, A., Peregrine, A. et al. (2020). Laparoscopic ureteronephrectomy for the treatment of giant kidney worm infection in 2 dogs. Can. Vet. J. 61 (11): 1149–1154. PMID: 33149350; PMCID: PMC7560772.

      57 57 Gonzalez‐Gasch, E. and Monnet, E. (2015). Comparison of single port access versus multiple port access systems in elective laparoscopy: 98 dogs(2005–2014). Vet. Surg. 44 (7): 895–899.

      58 58 Tapia‐Araya, A.E., Martin‐Portugués, I.D.G., Bermejo, L.F., and Sánchez‐Margallo, F.M. (2015). Laparoscopic ovariectomy in dogs: comparison between laparoendoscopic single‐site and three‐portal access. J. Vet. Sci. 16 (4): 525–530.

      59 59 Arntz, G.‐J.H.M. (2019). Transvaginal laparoscopic ovariectomy in 60 dogs: description of the technique and comparison with 2‐portal‐access laparoscopic ovariectomy. Vet. Surg. 48 (5): 726–734.

      60 60 Jeong, J., Ko, J., Lim, H. et al. (2016). Retroperitoneal laparoscopy in dogs: access technique, working space, and surgical anatomy. Vet. Surg. 45 (S1): O102–O110.

      61 61 Coisman, J.G., Case, J.B., Clark, N.D. et al. (2013). Efficacy of decontamination and sterilization of a single‐use single‐incision laparoscopic surgery port. Am. J. Vet. Res. 74: 934–938.

      62 62 Petrovsky, B. and Monnet, E. (2018). Evaluation of efficacy of repeated decontamination and sterilization of single‐incision laparoscopic surgery ports intended for 1‐time use. Vet. Surg. 47 (S1): O52–O58.

      63 63 Scharf, V.F., Dent, B., Jacob, M.E., and Moore, B. (2019). Efficacy of vaporized hydrogen peroxide for repeated sterilization of a single‐use single‐incision laparoscopic surgery port. Vet. Surg. 48 (S1): O59–O65.

      64 64 Bydzovsky, N.D., Bockstahler, B., and Dupré, G. (2019). Single‐port laparoscopic‐assisted ovariohysterectomy with a modified glove‐port technique in dogs. Vet. Surg. 48 (5): 715–725.

      65 65 Rieder, E., Martinec, D.V., Cassera, M.A. et al. (2011). A triangulating operating platform enhances bimanual performance and reduces surgical workload in single‐incision laparoscopy. J. Am. Coll. Surg. 212: 378–384.

      66 66 Shussman, N., Kedar, A., Elazary, R. et al. (2014). Reusable single‐port access device shortens operative time and reduces operative costs. Surg. Endosc. 28: 1902–1907.

      67 67 Podolsky, E.R. and Curcillo, P.G. (2010b). Single port access (SPA) surgery—a 24‐month experience. J. Gastrointest. Surg. 14: 759–767.

      68 68 Podolsky, E.R. and Curcillo, P.G. (2010a). Reduced‐port surgery: preservation of the critical view in single‐port‐access cholecystectomy. Surg. Endosc. 24: 3038–3043.

      69 69 Tsai, Y.‐C., Lin, V.C.‐H., Chung, S.‐D. et al. (2012). Ergonomic and geometric tricks of laparoendoscopic single‐site surgery (LESS) by using conventional laparoscopic instruments. Surg. Endosc. 26: 2671–2677.

      70 70 Yilmaz, H. and Alptekin, H. (2013). Single‐incision laparoscopic transabdominal preperitoneal herniorrhaphy for bilateral inguinal hernias using conventional instruments. Surg. Laparosc. Endosc. Percutan. Tech. 23: 320–323.

      71 71 Miernik, A., Schoenthaler, M., Lilienthal, K. et al. (2012). Pre‐bent instruments used in single‐port laparoscopic surgery versus conventional laparoscopic surgery: comparative study of performance in a dry lab. Surg. Endosc. 26: 1924–1930.

      72 72 Goldsmith, Z.G., Astroza, G.M., Wang, A.J. et al. (2012). Optical performance comparison of deflectable laparoscopes for laparoendoscopic single‐site surgery. J. Endourol. 26: 1340–1345.

Section III Fundamental Techniques in Laparoscopy

       Marlis L. de Rezende and Khursheed Mama

      Key Points

       Anesthesia management requires the understanding of the physiological effects associated with abdominal insufflation and body positions often required for the laparoscopic approach.

       Increased abdominal pressures and CO2 absorption through the peritoneum can significantly impact the cardiovascular and respiratory systems.

       Specific patient positioning, such as the Trendelenburg (head‐down) and reverse Trendelenburg (head‐up) positions, can further impact venous return and cardiac output, as well as oxygenation and ventilation.

       Albeit rare, an insufflation gas embolus to the heart is possible and can lead to cardiac arrest.

       Ventilatory support and monitoring, including electrocardiography, capnography, pulse oximetry, and arterial blood pressures, is strongly recommended for patients undergoing laparoscopic procedures. Direct arterial blood pressure and blood gas analysis may be required in higher‐risk patients.

      Laparoscopic

Скачать книгу