Informatics and Machine Learning. Stephen Winters-Hilt

Чтение книги онлайн.

Читать онлайн книгу Informatics and Machine Learning - Stephen Winters-Hilt страница 12

Informatics and Machine Learning - Stephen Winters-Hilt

Скачать книгу

id="ulink_d60080d1-72bb-570d-a387-b2e9771dcbd1">Figure 1.1 A Penrose tiling. A non‐repeating tiling with two shapes of tiles, with 5‐point local symmetry and both local and global (emergent) golden ratio.

      It is common to need to acquire a signal where the signal properties are not known, or the signal is only suspected and not discovered yet, or the signal properties are known but they may be too much trouble to fully enumerate. There is no common solution, however, to the acquisition task. For this reason the initial phases of acquisition methods unavoidably tend to be ad hoc. As with data dependency in non‐evolutionary search metaheuristics (where there is no optimal search method that is guaranteed to always work well), here there is no optimal signal acquisition method known in advance. In what follows methods are described for bootstrap optimization in signal acquisition to enable the most general‐use, almost “common,” solution possible. The bootstrap algorithmic method involves repeated passes over the data sequence, with improved priors, and trained filters, among other things, to have improved signal acquisition on subsequent passes. The signal acquisition is guided by statistical measures to recognize anomalies. Informatics methods and information theory measures are central to the design of a good finite state automata (FSAs) acquisition method, and will be reviewed in signal acquisition context in Chapters 24. Code examples are given in Python and C (with introductory Python described in Chapter 2 and Appendix A). Bootstrap acquisition methods may not automatically provide a common solution, but appear to offer a process whereby a solution can be improved to some desirable level of general‐data applicability.

      The background on information theory and variational/statistical modeling has significant roots in variational calculus. Chapter 3 describes information theory ideas and the information “calculus” description (and related anomaly detection methods). The involvement of variational calculus methods and the possible parallels with the nascent development of a new (modern) “calculus of information” motivates the detailed overview of the highly successful physics development/applications of the calculus of variations (Appendix B). Using variational calculus, for example, it is possible to establish a link between a choice of information measure and statistical formalism (maximum entropy, Section 3.1). Taking the maximum entropy on a distribution with moment constraints leads to the classic distributions seen in mathematics and nature (the Gaussian for fixed mean and variance, etc.). Not surprisingly, variational methods also help to establish and refine some of the main ML methods, including Neural Nets (NNs) (Chapters 9, 13) and Support Vector Machines (SVM) (Chapter 10). SVMs are the main tool presented for both classification (supervised learning) and clustering (unsupervised learning), and everything in between (such as bag learning).

      All of the tFSA signal acquisition methods described in Chapters 24 are O(L), i.e. they scan the data with a computational complexity no greater than that of simply seeing the data (via a “read” or “touch” command, O(L) is known as “order of,” or “big‐oh,” notation). Because the signal acquisition is only O(L) it is not significantly costly, computationally, to simply repeat the acquisition analysis multiple times with a more informed process with each iteration, to have arrived at a “bootstrap” signal acquisition process. In such a setting, signal acquisition is often done with bias to very high

Скачать книгу