Курс «Современный ТРИЗ». Модуль «Алгоритм решения инжиниринговых задач АРИнЗ». Станислав Львович Горобченко
Чтение книги онлайн.
Читать онлайн книгу Курс «Современный ТРИЗ». Модуль «Алгоритм решения инжиниринговых задач АРИнЗ» - Станислав Львович Горобченко страница 31
Рис. 16. Общий вид используемого клапана
Для проведения поэлементного анализа и сравнения с возможными проблемами, которые могут возникнуть при эксплуатации в аммиачной воде и кристаллизующихся средах из инструкции по эксплуатации был взят поэлементный чертеж клапана, рис.17.
Рис. 17. Сборочный чертеж клапана
Одновременно из инструкции по эксплуатации были выделены основные сведения, касающиеся запчастей, неисправностей и способов их устранения, рекомендуемых заводом-изготовителем. Данные по основным узлам были сведены в матрицу функций, с целью дальнейшего проведения поэлементного анализа.
Табл. 1. Матрица функций элементов арматуры
Прим.* О – основной элемент; В – Вспомогательный элемент; Вр – оказывающий вредное воздействие
Функциональный поэлементный анализ
Разбиение элементов на основные и вспомогательные позволяет провести их функционально-стоимостной анализ поэлементно. Основными элементами клапана являются рабочий орган и седло, как функциональный центр клапана, относительно которого и происходит все регулирование. Шток, сальники и подшипник, обеспечивают «силовую» и «трансмиссионную» часть клапана и работу рабочего органа. Наконец, вспомогательную функцию объединения всех деталей и направления потока в рабочую зону рабочего органа и седла обеспечивает корпус. Роль фланца состоит в обеспечении крепления клапана к трубопроводу. Разберемся в их роли подробнее и поищем, где есть разрывы между стоимостью узла (элемента) и его вкладом в выполнение полезной функции.
Первым из таких элементов выступал собственно тип клапана. Седловой клапан, как показанный на рис.18, не имеет возможности регулировать при сложном переменном составе среды. На нем происходит залипание и кристаллизация среды, со значительным уменьшением условного прохода. Значительные гидравлические сопротивления не дают возможности использовать все сечение трубопровода для перекачки дисперсных кристаллизующихся сред. Тем более невозможно сэкономить на уменьшении энергопотребления насосами.
Чтобы обеспечить работоспособность клапана в условиях абразивного износа, проектанты часто приравнивают эти условия к максимально жестким и, соответственно закладывают максимально жесткие конструкции клапанов. Например, ими могут быть пробковые клапаны. Однако среда забивается под конус, а высокая поверхность соприкосновения в этом случае создает «лучшие» условия для забивания трущихся поверхностей седла и конусной пробки и последующего непременного заклинивания.
Таким образом, жесткие конструкции клапанов не подходят. К тому же