Distributed Acoustic Sensing in Geophysics. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Distributed Acoustic Sensing in Geophysics - Группа авторов страница 14

Distributed Acoustic Sensing in Geophysics - Группа авторов

Скачать книгу

who have just stepped into this fast-growing field.

      We would like to thank the AGU Books Editorial Board for supporting this monograph. Without the efforts from contributing authors it would not have been possible to accomplish this project. We would also like to thank the many volunteer reviewers who spent tremendous amounts of time and effort to ensure that each chapter is of the highest quality. We appreciate Jonathan B. Ajo‐Franklin, Biondo L. Biondi, Mahmoud Farhadiroushan, Albena Mateeva, and Siyuan Yuan for providing their pictures as candidates for the book cover design. Thanks are also extended to the AGU Books editorial team at Wiley, especially Dr. Rituparna Bose, Layla Harden, Noel McGlinchey, Vaishali Rajasekar, Sangaprabha Mohan, Bobby Kilshaw, Nithya Sechin, and Emily Bae, for their organization, management, and cover design.

      This monograph will be the first comprehensive handbook for anyone interested in learning DAS principles and applications. We hope that the book will have a wide spectrum of readers – such as geophysicists, seismologists, geologists, and geoscientists; environmental scientists; and graduate and undergraduate students in geophysics and geoscience – with a common interest in DAS geophysical applications. This book also provides a common platform to the scientific and industry communities to share state‐of‐the‐art DAS technology.

       Yingping Li

       BlueSkyDas (formerly Shell), USA

       Martin Karrenbach

       OptaSense Inc. (A LUNA Company), USA

       Jonathan B. Ajo‐Franklin

       Rice University and Lawrence Berkeley National Laboratory, USA

Part I Distributed Acoustic Sensing (DAS)Concept, Principle, and Measurements

       Sergey Shatalin, Tom Parker, and Mahmoud Farhadiroushan

       Silixa Ltd. Elstree, UK

      ABSTRACT

      The distributed acoustic sensor (DAS) offers a new versatile tool for geophysical applications. The system allows seismic signals to be recorded along tens of kilometers of optical fiber and over a wide frequency range. In this chapter we introduce the concept of DAS and derive an expression for the system response by modeling the superposition of the coherent backscatter fields along the fiber. Expressions are derived for converting the optical phase to strain rate and equivalent particle motion. We discuss DAS signal processing and denoising methods to deal with the random nature of the Rayleigh scatter signal and to further improve dynamic range and sensitivity. Next we consider DAS parameters such as spatial resolution, gauge length and directionality in comparison with geophones. We present some field trial results that demonstrate the benefits of the DAS for vertical seismic profiling and microseismic detection. Finally we discuss the fundamental sensitivity limit of DAS. We consider how the scattering properties of conventional fiber can be engineered to deliver a step‐change DAS performance, beyond that of conventional geophones and seismometers. Theoretical findings are illustrated by the field data examples, including low‐frequency strain monitoring and microseismic detection.

      In this chapter, we consider the principles and performance of distributed and precision engineered fiber optic acoustic sensors for geophysical applications (Hartog et al., 2013; Parker et al., 2014). In particular, system parameters such as spatial resolution, dynamic range, sensitivity, and directionality are examined for seismic and microseismic measurements.

image

      1.1.1. DAS Concept

      The principle of the COTDR system can be understood by analyzing the radiation generated by localized scatter centers (Taylor & Lee, 1993). Here, the coherent scattered light can be represented as the result of two reflections with random amplitude and phase. When the fiber is strained, the backscatter intensity varies in accordance with the strain rate (Figure 1.2), but with an unpredictable amplitude and phase, which changes along the fiber (Shatalin et al., 1998). As a result, the signal cannot be

Скачать книгу