Distributed Acoustic Sensing in Geophysics. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Distributed Acoustic Sensing in Geophysics - Группа авторов страница 30

Distributed Acoustic Sensing in Geophysics - Группа авторов

Скачать книгу

acoustic sensor. First Break, 37(4), 66–68.

      47  Servin, M., Kujawinska, M., & Padilla, J. M. (2017). Modern fringe pattern analysis in interferometry. In Advanced Optical Instruments and Techniques (pp. 101–152). CRC Press.

      48 Shatalin, S. V., Treschikov, V. N., & Rogers, A. J. (1998). Interferometric optical time‐domain reflectometry for distributed optical‐fiber sensing. Applied Optics, 37(24), 5600–5604. doi: 10.1364/AO.37.005600

      49 Shatalin, S., Mamedov, A., Potapov, V., & Sedykh, D. (1991). Optical frequency domain multiplexing of fiber‐optic sensors. The First International Soviet Fibre Optics Conference, ISFOC ′91 (pp. 307–308).

      50 Subsea Fiber Optic Monitoring (SEAFOM) working group (2018). Measuring Sensor Performance—DAS Parameter Definitions and Tests SEAFOM‐MSP‐02. Retrieved from https://seafom.com/published‐documents/

      51 Taylor, H. F., & Lee, C. E. (1993). U.S. Patent No. 5,194,847. Washington, DC: U.S. Patent and Trademark Office.

      52 Todd, M. (2011, April). Noise propagation in a 3×3 optical demodulation scheme used for fiber Bragg grating interrogation. Paper presented in Smart Sensor Phenomena, Technology, Networks, and Systems 2011 (Vol. 7982, p. 79820A). International Society for Optics and Photonics. doi: 10.1117/12.878694

      53 Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine, 16(6), 22–38. doi: 10.1117/12.467162

      54 Wielandt, E., & Widmer‐Schnidrig, R. (2002). Seismic sensing and data acquisition in the GRSN. Ten Years of German Regional Seismic Network (GRSN) (pp. 73–83).

      55 Westbrook, P. S., Feder, K. S., Ortiz, R. M., Kremp, T., Monberg, E. M., Wu, H., et al. (2017, April). Kilometer length, low loss enhanced back scattering fiber for distributed sensing. Paper presented in 2017 25th Optical Fiber Sensors Conference (OFS) (pp. 1–5). IEEE.

      56 Wuestefeld, A., & Wilks, M. (2019). How to twist and turn a fiber: Performance modeling for optimal DAS acquisitions. The Leading Edge, 38(3), 226–231.

a(z) arbitrary function
A 0 fiber elongation corresponding to 1 rad of phase shift
A(z, t) output of DAS
A1(z) output of DAS with first order algorithm
A2(z) output of DAS with second order algorithm
b(z) arbitrary function
c optical speed of light in fiber
C speed of sound
D DAS dynamic range
e(t′) optical field of coherent input pulse
E(t′) optical field on photodetector
(K, F) Fourier transforms of seismic signal
Fourier transform symbol
F frequency of sound
F MAX maximum frequency of sound
F S pulse repetition rate or sampling frequency
G(z) geophone antenna response
energy quant
Im Z imaginary part of interference output
Ij (z, t) intensity trace for different interferometric output
I(z, t) photodetector intensity trace
j integer number
K acoustic angular wavenumber
K z acoustic angular wavenumber along fiber
K e ratio of optical to physical length of fiber
L fiber length
L P integration length
L 0 interferometer length also known as gauge length
L S scattering zones spacing
M number of scattering zones
n eff fiber effective refractive index
N F noise figure of amplifier
N number of photons per second
p(z) averaging function
P 0 input peak power
P number of different interferometric ports or pulses
R BS backscattering coefficient of fiber
r0(z) distribution

Скачать книгу