Идиот или гений? Как работает и на что способен искусственный интеллект. Мелани Митчелл
Чтение книги онлайн.
Читать онлайн книгу Идиот или гений? Как работает и на что способен искусственный интеллект - Мелани Митчелл страница 9
Одной из первых субсимволических ИИ-программ, созданных по модели мозга, стал перцептрон, изобретенный в конце 1950-х годов психологом Фрэнком Розенблаттом[29]. Сегодня термин “перцептрон” кажется заимствованным из научной фантастики пятидесятых годов (как мы увидим, вскоре за ним последовали “когнитрон” и “неокогнитрон”), но перцептрон стал важной вехой развития ИИ и может считаться авторитетным прадедом самого успешного инструмента современного ИИ, глубоких нейронных сетей.
Розенблатт изобрел перцептрон, обратив внимание на то, как нейроны обрабатывают информацию. Нейрон – это клетка мозга, которая получает электрический или химический импульс от связанных с нею нейронов. Грубо говоря, нейрон суммирует все импульсы, которые получает от других нейронов, и сам посылает импульс, если итоговая сумма превышает определенный порог. Важно, что разные связи (синапсы) конкретного нейрона с другими нейронами имеют разную силу, а потому, суммируя импульсы, нейрон придает больше веса импульсам от сильных связей, чем импульсам от слабых связей. Нейробиологи полагают, что поправки на силу связей между нейронами – важнейший элемент процесса обучения, происходящего в мозге.
С точки зрения специалиста по информатике (или, как в случае с Розенблаттом, психолога), обработку информации нейронами можно смоделировать в компьютерной программе – перцептроне, – которая преобразует много численных входных сигналов в один выходной сигнал. Аналогия между нейроном и перцептроном показана на рис. 1. На рис. 1A мы видим нейрон с ветвистыми дендритами (волокнами, которые проводят входящие импульсы в клетку), телом клетки и аксоном (или выводным каналом). На рис. 1B изображен простой перцептрон. Как и нейрон, перцептрон суммирует все входящие сигналы. Если итоговая сумма равняется порогу перцептрона или превышает его, перцептрон выдает значение 1 (“передает сигнал”); в противном случае он выдает значение 0 (“не передает сигнал”). Чтобы смоделировать различную силу связей нейрона, Розенблатт предложил присваивать каждому входному сигналу перцептрона численный вес и умножать входной сигнал на его вес, прежде чем прибавлять к сумме. Порог перцептрона – это число, определяемое программистом (или, как мы увидим, узнаваемое самим перцептроном).
29
F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain”,