North American Agroforestry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу North American Agroforestry - Группа авторов страница 35

North American Agroforestry - Группа авторов

Скачать книгу

et al., 1995; Garrity 2005; Schoeneberger et al., 2006). Thus, although we now recognize six categories of agroforestry practices for nomenclature purposes, these practices are not rigid. Rather, the application of agroforestry should be seen as a common‐sense approach tailored to local needs and conditions (Sobels et al., 2001; Rule et al., 2000; Rios‐Diaz et al., 2018). The result is an approach that is similar to whole farm planning in that the emphasis is on the design of a system for a given field, farm, or watershed rather than the promotion of a particular land use option (Gold et al., 2013, 2018).

      As found in the chapters within this volume, over the past decade, there has been rapid development of agroforestry science in support of agroforestry practices. Appropriate technologies, information, and tools have been developed to design agroforestry practices to achieve specific production and conservation objectives at the local level (Bentrup and Kellerman, 2004; Shelton et al., 2005; Gold et al., 2013, 2018; Wilson et al., 2018). Based on strong supporting data obtained from multiple studies accumulated at numerous sites over many years, agroforestry science is well on the way toward developing the principles (i.e., component interactions and ecosystem functions) that underlie these practices (Nair, 2007; Lovell et al., 2017; USDA, 2017; Munsell and Chamberlain, 2019).

      As a science‐based on interacting components within practices (i.e., combinations of trees, crops and livestock), agroforestry draws upon knowledge from many different disciplines. Beginning in 1990 and evolving rapidly in the past decade, a critical process‐level, science‐based approach to agroforestry research has gradually emerged. An understanding of component interactions is being assembled which will enable applications to be designed in a predictable manner. The bottom line for agroforestry is to be able to locally apply technologies that generate predictable and positive interactions, and optimize them for the benefit of the farmer and associated land resources, and for society as a whole. To achieve the bottom line, a fusion of top‐down and bottom‐up approaches are needed that are market‐focused and result in the development of robust social networks (Rule et al., 2000; Valdivia et al., 2022) at multiple social and spatial scales (i.e., landowner, community, state, region, and nation).

      1 Altieri, M.A., C.I. Nicholls, and R. Montalba. 2017. Technological approaches to sustainable agriculture at a crossroads: An agroecological approach. Sustainability 9:349. doi:10.3390/su9030349

      2 Anderson, M.K., and J. Rosenthal. 2015. An ethnobiological approach to reconstructing indigenous fire regimes in the foothill chaparral of the Western Sierra Nevada. J. Ethnobiol. 35(1):4–36. doi:10.2993/0278‐0771‐35.1.4

      3 Anderson, L.S., and F.L. Sinclair. 1993. Ecological interactions in agroforestry systems. Agroforestry Abstracts 6(2):57–91.

      4 Atangana, A., D. Khasa, S. Chang, and A. Degrande. 2013. Definitions and classifications of agroforestry systems In: A. Degrande, D. Khasa, and S. Chang, (eds.), Tropical agroforestry. Dordrecht, The Netherlands: Springer. p. 35–47. doi:10.1007/978‐94‐007‐7723‐1.

      5 Baker, T.P., M.T. Moroni, D.S. Mendham, R. Smith, and M.A. Hunt. 2018. Impacts of windbreak shelter on crop and livestock production. Crop Pasture Sci. 69(8):785–796. doi:10.1071/CP17242

      6 Bentrup, G., and T. Kellerman. 2004. Where should buffers go? Modeling riparian habitat connectivity in northeast Kansas. J. Soil Water Conserv. 59:209–213.

      7  Blanco‐Canqui, H., C.J. Gantzer, S.H. Anderson, E.E. Alberts, and A.L. Thompson. 2004. Grass barrier and vegetative filter strip effectiveness in reducing runoff, sediment, nitrogen, and phosphorus loss. Soil Sci. Soc. Am. J. 68:1670–1678. doi:10.2136/sssaj2004.1670

      8 Brandle, J. R., E. Takle and Z. Zhou. 2022. Windbreak practices. Chapter 5. In: H.E. Garrett, S. Jose, and M.A. Gold, (eds.), North American agroforestry. 3rd ed. Madison, WI: Agronomy Society of America.

      9 Brunetti, J. 2006. Forage quality and livestock health: A nutritionist’s view. In: T. Morris and M. Keilty, editors, Alternative health practices for livestock. Wiley‐Blackwell Publishers, London. p. 85–103. doi:10.1002/9780470384978.ch8

      10 Bukowski, C., and J. Munsell. 2018. The Community food forest handbook: How to plan, organize, and nurture edible gathering places. Chelsea Green Publishing, Hartford, VT.

      11 Clark, K.H., and K.A. Nicholas. 2013. Introducing urban food forestry: A multifunctional approach to increase food security and provide ecosystem services. Landsc. Ecol. 28(9):1649–1669. doi:10.1007/s10980‐013‐9903‐z

      12 Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387:253–260. doi:10.1038/387253a0

      13 Curtis, A., J. Birkhead, and T. De Lacy. 1995. Community participation in landcare policy in Australia: the Victorian experience with regional landcare plans. Soc. Nat. Resour. 8:415–430. doi:10.1080/08941929509380933

      14 den Herder, M., G. Moreno, R.M. Mosquera‐Losada, J.H.N. Palma, A. Sidiropoulou, J.J. Santiago Freijanes, J. Crous‐Duran, J.A. Paulo, M. Tomé, A. Pantera, V.P. Papanastasie, K. Mantzanas, P. Pachana, A. Papadopoulos, T. Plieninger, and P.J. Burgess. 2017. Current extent and stratification of agroforestry in the European Union. Agric. Ecosyst. Environ. 241:121–132. doi:10.1016/j.agee.2017.03.005

      15 Dosskey, M.G., K.D. Hoagland, and J.R. Brandle. 2007. Change in filter strip performance over ten years. J. Soil Water Conserv. 62:21–32.

      16 Dupraz, C., G.J. Lawson, N. Lamersdorf, V.P. Papanastasis, A. Rosati, and J. Ruiz‐Mirazo. 2018a. Temperate agroforestry: The European way. p. 98–152. In: A.M. Gordon, S.M. Newman, and B. Coleman (ed.), Temperate agroforestry systems. 2nd Edition. Wallingford, U.K.: CABI.

      17 Dupraz, C., C. Blitz‐Frayret, I. Lecomte, Q. Molto, F. Reyes, and M. Gosme. 2018b. Influence of latitude on the light availability for intercrops in an agroforestry alley‐cropping system. Agroforest Syst 92:1019–1033. doi:10.1007/s10457‐018‐0214‐x

      18 Dupraz, C., K.J. Wolz, I. Lecomte, G. Talbot, G. Vincent, R. Mulia, F. Bussière, H. Ozier‐Lafontaine, S. Andrianarisoa, N. Jackson, G. Lawson, N. Dones, H. Sinoquet, B. Lusiana, D. Harja, S. Domenicano, F. Reyes, M. Gosme, and M. Van Noordwijk. 2019. Hi‐sAFe: A 3D agroforestry model for integrating dynamic tree–crop interactions. Sustainability 11:2293. doi:10.3390/su11082293

      19 Edwards, C.A., T.L. Grove, R.R. Harwood, and C.J.P. Colfer. 1993. The role of agroecology and integrated farming systems in agricultural sustainability. Agric. Ecosyst. Environ. 46:99–121. doi:10.1016/0167‐8809(93)90017‐J

      20 Eichhorn, M.P., P. Paris, F. Herzog, L.D. Incoll, F. Liagre, K. Mantzanas, M. Mayus, G. Moreno, V.P. Papanastasis, D.J. Pilbeam, A. Pisanelli, and C. Dupraz. 2006. Silvoarable systems in Europe– past, present and future prospects. Agrofor. Syst. 67:29–50. doi:10.1007/s10457‐005‐1111‐7

      21 Elevitch, C.R., D.N. Mazaroli, and D. Ragone. 2018. Agroforestry standards for regenerative agriculture. Sustainability 10(9):3337. doi:10.3390/su10093337

      22 Faulkner, P.A., B. Owooh, and J. Idassi. 2014. Assessment of the adoption of agroforestry technologies by limited‐resource farmers in North Carolina. J. Ext. 52(5): 5RIB7. https://joe.org/joe/2014october/rb7.php.

      23 Feliciano, D., A. Ledo, J. Hillier, and D.R. Nayak. 2018. Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric. Ecosyst. Environ. 254:117–129 doi:10.1016/j.agee.2017.11.032

      24 Ferguson,

Скачать книгу