Flexible Thermoelectric Polymers and Systems. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Flexible Thermoelectric Polymers and Systems - Группа авторов страница 13

Flexible Thermoelectric Polymers and Systems - Группа авторов

Скачать книгу

like camphorsulfonic acid (HCSA) can be dispersed in organic solvent such as m‐cresol and chloroform [20]. The solvent significantly affects the crystallinity and the conductivity of polyaniline:HCSA (PANi:HCSA) because it can affect the conformation of the polymer chains in solution. When a PANi:HCSA film is prepared from chloroform, its conductivity is only 10−1 S cm−1, while it can be >100 S cm−1 when it is obtained from m‐cresol. This difference in conductivity is attributed to the effect of the solvents on the crystallinity of polyaniline. As shown in Figure 1.14, there is a strong absorption in the infrared range for the PANi:HCSA film cast from its m‐cresol solution [15]. This suggests a high crystallinity and the delocalization of the charge carrier. Instead, only a band appears in the near infrared (NIR) range when chloroform is used as the solvent. This is consistent with the low crystallinity.

Schematic illustration of UV–visible–NIR absorption spectra of PANi:HCSA films casted from solutions with (a) m-cresol or (b) chloroform as the solvent, respectively.

      Source: MacDiarmid and Epstein [15]. © Elsevier.

      Source: Xia et al. [21]. © John Wiley & Sons.

      A couple of secondary doping methods were also reported for PEDOT:PSS. PEDOT:PSS can be dispersed in water [17–19]. The conductivity of an as‐prepared PEDOT:PSS film is only 10−1 S cm−1, and it can be significantly enhanced by secondary doping. The chemicals for the secondary doping can be organic solvents like dimethyl sulfoxide (DMSO), ethylene glycol (EG) and even methanol, cosolvent of water and organic solvents, aqueous or organic solutions, ionic liquids, and acids. Particularly, the conductivity of PEDOT:PSS can be enhanced from 10−1 S cm−1 to higher than 3000 S cm−1 through a post acid treatment [21–24]. The conductivity enhancement is ascribed to the partial removal of the insulating PSSH from PEDOT:PSS and the conformational change of PEDOT from coil to expanded‐coil or linear structure. Less PSSH chains and linear PEDOT conformation can lead to high crystallinity and thus high conductivity.

      Mechanical stretching can orient polymer chains along the tensile direction and thus increase the crystallinity. It has been used to increase the conductivity of conducting polymers as well [25, 26]. For example, it can increase the conductivity of polyacetylene up to 105 S cm−1.

      1.1.5.3 Temperature Dependence of Conductivity

       1.1.5.3.1 Metals

      The temperature dependence of the conductivity is related to the charge transport mechanism. Varying the temperature does not affect the charge carrier density but the charge carrier mobility of metals. As the lattice vibrations become stronger at higher temperature, the scattering of the conduction electrons by lattice vibrations becomes more significant at higher temperature. This lowers the charge carrier mobility. The conductivity of metals thus decreases with the increasing temperature. There are two empirical formulas for the temperature dependence of the resistance of metals. One is the power law form,

      (1.15)rho equals rho 0 left-parenthesis StartFraction upper T Over upper T 0 EndFraction right-parenthesis Superscript n Baseline period

      The resistivity (ρ) at temperature (T) is related to the resistivity (ρ 0) at the reference temperature (T 0). The resistivity linearly increases with temperature in another form, and the temperature effect is characterized by the temperature coefficient of resistivity (α 0),

      (1.16)rho equals rho 0 left-bracket 1 plus alpha 0 left-parenthesis upper T minus upper T 0 right-parenthesis right-bracket period

      In both forms, the resistivity of metals increases with the increasing temperature.

       1.1.5.3.2 Semiconductors

      There are two temperature regimes for the temperature dependence of the charge carrier mobility of semiconductors. At low temperature regime, the ionized impurities are the charge carrier scattering centers. In this temperature range, the charge carrier mobility increases with the increasing temperature because the scattering area decreases. At high temperature, the scattering by the lattice vibration becomes the dominant factor for the charge carrier mobility. Similar to metals, the charge carrier mobility decreases with the increasing temperature in the high temperature regime.

      Therefore, the temperature dependence of the conductivity of semiconductor is more complicated than that of metals. At low and high temperature range, the conductivity of semiconductor increases with the increasing temperature. The conductivity can be less sensitive to the temperature or even decrease in the medium temperature range.

      The temperature dependence of the conductivity is usually used to determine whether a conductor is metallic or semiconductive. In general, if the conductivity decreases with the increasing temperature, it is metallic. In contrast, if the conductivity increases with the increasing temperature, it is considered as semiconductive behavior. This is also frequently used to judge the charge transport mechanism of non‐conventional materials, such as carbon nanotubes, graphene, and

Скачать книгу