Data Mining and Machine Learning Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Data Mining and Machine Learning Applications - Группа авторов страница 5

Data Mining and Machine Learning Applications - Группа авторов

Скачать книгу

16.5 Binary anticipated guides utilizing various percentiles to character...Figure 16.6 Label forecast by characterized percentile edge.Figure 16.7 Model evaluation against different category levels. It is feasible t...Figure 16.8 Heatmaps assumptions using several edges. (a) uses the 96th percenti...Figure 16.9 Large-goal heatmap from over Delhi region. The rose-colored region o...Figure 16.10 Shows flow chart of proposed application system.Figure 16.11 Shows icon of application.Figure 16.12 Shows form of registration.Figure 16.13 Shows login page.Figure 16.14 Misconduct place finder.Figure 16.15 Location recognized on map.Figure 16.16 Show message sent by user.Figure 16.17 Shows received message to enrolled contact.Figure 16.18 Location of client.

      17 Chapter 17Figure 17.1 Object instance segmentation.

      List of Tables

      1 Chapter 1Table 1.1 Comparison in a data warehouse—OLTP.

      2 Chapter 2Table 2.1 Shows social media network applies to various data services.

      3 Chapter 3Table 3.1 Show the advantage and disadvantage of different types of RS.Table 3.2 Shows which technique, evaluation criteria are used in different RS.Table 3.3 Base of usage predication.Table 3.4 Comparative study of hybrid approach with traditional approach.

      4 Chapter 5Table 5.1 The transformation from word to lexeme.Table 5.2 Transformation to an extraordinary word list.Table 5.3 Vector portrayal of a report corpus.Table 5.4 The portrayal of the corpus utilized in this examination.Table 5.5 Groups with various Silhouette an incentive for every calculation.

      5 Chapter 6Table 6.1 Data mining developments qualified statement.Table 6.2 Shows application and usage of data mining.Table 6.3 Understudy related factors.Table 6.4 High potential variables.Table 6.5 Analysis of various classifiers.Table 6.6 Comparative analysis of various classifiers with their precision rates...

      6 Chapter 7Table 7.1 Number of tickets raised by 24 accounts/day and closed tickets/day: da...Table 7.2 Overfitness, testing error and accuracy of the random forest model.

      7 Chapter 8Table 8.1 Buyer counts.Table 8.2 Analysis of maximum likelihood estimates.

      8 Chapter 11Table 11.1 Shows cash flow statement source field in SAP System.Table 11.2 Shows key figures, dimensions, and characteristics of infocube.

      9 Chapter 13Table 13.1 Summarized detail of source and target datasets.

      10 Chapter 15Table 15.1 Different waveforms present in the brain.Table 15.2 CHB-MIT patient wise description.Table 15.3 Ictal (Seizure), Inter-ictal (Normal), and Pre-ictal (Partial Seizure...Table 15.4 Performance evaluation measures.Table 15.5 Performance metric when learning rate is set to 0.001.Table 15.6 Performance metric when learning rate is set to 0.01.Table 15.7 Performance metrics when learning rate is set to 0.1.Table 15.8 Comparative analysis of already proposed methodologies.

      11 Chapter 16Table 16.1 Labels for every forecast.Table 16.2 Predictions mean various percentiles limits.

      Guide

      1  Cover

      2  Table of Contents

      3  Title Page

      4  Copyright

      5  Begin Reading

      6  Index

      7  End User License Agreement

      Pages

      1  v

      2  ii

      3  iii

      4  iv

      5  xvii

      6 xviii

      7  1

      8  2

      9 3

      10 4

      11  5

      12 6

      13 7

      14 8

      15 9

      16  10

      17 11

      18  12

      19  13

      20  14

      21  15

      22  16

      23  17

      24  18

      25  19

      26  21

      27 

Скачать книгу