Clathrate Hydrates. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Clathrate Hydrates - Группа авторов страница 22

Clathrate Hydrates - Группа авторов

Скачать книгу

proved to be the key to the determination of better parameters for the guest–host potential.

      In 1990, NRC underwent a major reorganization that saw the disappearance of the familiar Division and Section structure. Most of the Clathrate Group members joined a larger group entitled Molecular Structure and Dynamics in the newly minted Steacie Institute for Molecular Sciences at the Sussex Drive location of the NRC (Figure 1.5). This group, led by Keith Preston, had a broader outlook on materials and also brought new expertise and capabilities.

Photograph depicts National Research Council Canada building at 100 Sussex Drive, Ottawa, the home of much of the clathrate hydrate research 1990–2015.

      Figure 1.5 National Research Council Canada building at 100 Sussex Drive, Ottawa, the home of much of the clathrate hydrate research 1990–2015. Source: Reproduced with permission from the National Research Council.

      From phase equilibrium studies, dimethyl ether was known to form two hydrates, one having the CS‐II structure, the second was thought to be isostructural with bromine hydrate. However, it, was discovered that the second hydrate had a novel, dense trigonal structure. Unique among the simple hydrate structures, it did not have any pentagonal dodecahedral cages, although some novel cage geometries were observed.

      In collaboration with Satoshi Takeya, a major advance was made in the diffraction of powdered hydrate samples (2009). Direct methods for the analysis of powder X‐ray diffraction (PXRD) patterns, dealing with molecular fragments rather than atoms, reduced the number of parameters to be refined and were able to give detailed structural information, including cage occupancies.

      The Clathrate Group joined a Canada–Japan project (JAPEX/JNOC/GSC) on the exploration of natural gas hydrate deposits in the Mallik site in the Canadian Arctic. The NRC group contributed laboratory analysis of recovered hydrate samples from the Mallik 2L‐38 site: 13C NMR, Raman, diffraction, calorimetry, gas, and saturation analyses were conducted on samples. Hailong Lu joined the group, first as a visiting scientist (2002), bringing his expertise on the geochemical analysis of natural gas hydrates. One outcome was the establishment of a protocol for the characterization of hydrate from natural sources, including the determination of structure and composition. Collaboration with members of a number of hydrate cruises followed. Samples from many worldwide hydrate locations were shipped to NRC in liquid nitrogen containers. One highlight, published in 2007, was the discovery of naturally occurring structure H hydrate on the Cascadia margin, offshore Vancouver Island. The synthetic version was first reported 20 years before by the hydrate group. The structure is capable of trapping large hydrocarbon molecules and is far more stable than CS‐I hydrate. The findings were published in Nature entitled, “Complex gas hydrate from the Cascadia Margin.”

      The van der Waals–Platteeuw theory was developed to describe hydrate formation from water and small non‐polar guests. Potentials to describe guest–host interactions in this case tend to be of the Lennard–Jones or Kihara type. Differences due to guest chemistry tend to be hidden because of the limited number of potential parameters which ultimately are obtained by fitting to experimental observables. This procedure effectively captures all guest–host interactions (e.g. van der Waals interactions, dipolar interactions, hydrogen bonding interaction, etc.) even though only the non‐directional van der Waals interactions are explicitly taken into account when developing the approach. At the NRC, efforts to look for explicit effects of guest chemistry on hydrate properties were spread over many years and involved a number of techniques and contributions from Davidson, Alavi, Udachin, Ratcliffe, Moudrakovski, and Ripmeester, among others.

      Stronger hydrogen bond formation, such as for methanol in the double CS‐II THF‐methanol hydrate and for t‐butylamine in the CS‐II t‐butylamine + H2S binary hydrate, can lead to displaced or vacant water positions in the hydrate lattice. It can be surmised that a sufficient number of such defects can destabilize the hydrate lattice.

      Since

Скачать книгу