Clathrate Hydrates. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Clathrate Hydrates - Группа авторов страница 29

Clathrate Hydrates - Группа авторов

Скачать книгу

compress (via inert mercury) the cooled sample, which lies in the vertical cylinder (m), near the center of the figure. Crystal formation can be seen through the glass sample holder. After compression of the sample and cooling through an outer jacket, the hydraulic pressure on the sample is released, leading to expansion of the sample and a further temperature drop (détente). The pressure on the sample is measured with the mercury manometer on the right (N and N′). Source: Tissandier [40], reproduced with permission from: Cnum – Conservatoire numérique des Arts et Métiers.

      Zygmunt Florenty Wróblewski, while working in Jules Henri Debray's laboratory at the École Normale Supérieure in Paris, made use of the Cailletet apparatus in the studies of the solubility of carbon dioxide which led to the discovery of carbon dioxide hydrate in 1882 [44]. Since CO2 hydrate requires a somewhat higher pressure for stability (e.g. 12.3 atm at 0 °C) than hydrates prepared previously, it was prepared by compressing CO2 gas over water at a pressure near that required for liquefaction, followed by sudden détente of pressure to produce a crystal nucleus, and then increase of pressures to above the value at which the wall of the containing vessel becomes coated with hydrate crystals. With a subsequent reduction of pressure below the value of bulk hydrate formation, which did not depend on the relative amount of water and carbon dioxide present, the hydrate disappeared. To determine the composition, Wróblewski [45] volumetrically measured the quantity of CO2 gas which combined with a small weighed amount of water. Accounting for non‐ideality corrections for the gas, he found the stoichiometry of CO2·8.01H2O as the average of 19 analyses at 16 atm and 0 °C, with a standard deviation in the hydration number of ±0.54. A further study [46] involved the role played by the abrupt fall of pressure during détente and crystallization. He promoted the principle that hydrates can only form when the concentration of dissolved gas in the aqueous solution matches its concentration in the hydrate. This condition is not normally met with carbon dioxide which becomes a liquid at a pressure well below that at which its concentration in liquid water becomes equal to its hydrate composition. He believed, however, that the cooling produced by détente could produce the requisite increase in solubility. The principle of equal concentrations was not generally true for the other known hydrates, in particular for the case of methane hydrate. That it had credibility reflects the rather poor understanding of phase equilibria at the time. Wróblewski recognized that the cooling normally produced ice as well as hydrate and insisted that all of the water would be converted to hydrate only if the relative amount of water was very small and its surface area very large.

      Early studies on gas hydrates had shown that the equilibrium pressure of formation of the hydrate from (or decomposition of the hydrate into) liquid water and gas depended only on temperature (i.e. the equilibrium is univariant), and this equilibrium pressure increased with increase of temperature for chlorine [43], phosphine [42], hydrogen sulfide [42], and carbon dioxide hydrates [44]. This behavior was similar to that observed when a solid decomposed into a solid and a gas and was known as Debray's law after the recent observations of the dissociation pressures of calcium carbonate and a variety of stoichiometric salt hydrates.

Photographs depict pioneers of clathrate science in the late 1800s and early 1900s. From left to right, Hendrik Willem Bakhuis Roozeboom, Robert Hippolyte de Forcrand, and Paul Ulrich Villard.

      Figure 2.3 Pioneers of clathrate science in the late 1800s and early 1900s. From left to right, Hendrik Willem Bakhuis Roozeboom, Robert Hippolyte de Forcrand, and Paul Ulrich Villard. Sources: Original photograph by Albert Greiner, reproduced with permission from the Allard Pierson Museum, University of Amsterdam, Reproduced with permission from Université de Montpellier, Reproduced courtesy of the Archives de l'Académie des Sciences, 23, Quai de Conti, 75006 Paris, France.

      Lorsqu'on

Скачать книгу