Spiro Compounds. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Spiro Compounds - Группа авторов страница 22

Spiro Compounds - Группа авторов

Скачать книгу

(2010). Small molecules of different origins have distinct distributions of structural complexity that correlate with protein‐binding profiles. Proc. Natl. Acad. Sci. U. S. A. 107 (44): 18787–18792.

      23 23 Brooks, W.H., Guida, W.C., and Daniel, K.G. (2011). The significance of chirality in drug design and development. Curr. Top. Med. Chem. 11 (7): 760–770.

      24 24 Nguyen, L.A., He, H., and Pham‐Huy, C. (2006). Chiral drugs: an overview. Int. J. Biomed. Sci. 2 (2): 85–100.

      25 25 Matthews, S.J. and McCoy, C. (2003). Thalidomide: a review of approved and investigational uses. Clin. Ther. 25 (2): 342–395.

      26 26 Lovering, F., Bikker, J., and Humblet, C. (2009). Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52 (21): 6752–6756.

      27 27 Lovering, F. (2013). Escape from flatland 2: complexity and promiscuity. Med. Chem. Commun. 4 (3): 515–519.

      28 28 Wipf, P., Skoda, E.M., and Mann, A. (2015). Chapter 11 – conformational restriction and steric hindrance in medicinal chemistry. In: The Practice of Medicinal Chemistry, 4e (eds. C.G. Wermuth, D. Aldous, P. Raboisson and D. Rognan), 279–299. San Diego: Academic Press.

      29 29 Leeson, P.D. and Springthorpe, B. (2007). The influence of drug‐like concepts on decision‐making in medicinal chemistry. Nat. Rev. Drug Discov. 6 (11): 881.

      30 30 Aldeghi, M., Malhotra, S., Selwood, D.L., and Chan, A.W.E. (2014). Two‐ and three‐dimensional rings in drugs. Chem. Biol. Drug Des. 83 (4): 450–461.

      31 31 Ritchie, T.J. and Macdonald, S.J.F. (2009). The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design? Drug Discov. Today 14 (21): 1011–1020.

      32 32 Zheng, Y.‐J. and Tice, C.M. (2016). The utilization of spirocyclic scaffolds in novel drug discovery. Expert Opin. Drug Discov. 11 (9): 831–834.

      33 33 Zheng, Y., Tice, C.M., and Singh, S.B. (2014). The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett. 24 (16): 3673–3682.

      34 34 Zhao, Y., Aguilar, A., Bernard, D., and Wang, S. (2015). Small‐molecule inhibitors of the MDM2‐p53 protein‐protein interaction (MDM2 inhibitors) in clinical trials for cancer treatment. J. Med. Chem. 58 (3): 1038–1052.

      35 35 Skalniak, L., Surmiak, E., and Holak, T.A. (2019). A therapeutic patent overview of MDM2/X‐targeted therapies (2014–2018). Expert Opin. Ther. Pat. 29 (3): 151–170.

      36 36 de Jonge, M., de Weger, V.A., Dickson, M.A. et al. (2017). A phase I study of SAR405838, a novel human double minute 2 (HDM2) antagonist, in patients with solid tumours. Eur. J. Cancer 76: 144–151.

      37 37 de Weger, V.A., de Jonge, M., Langenberg, M.H.G. et al. (2019). A phase I study of the HDM2 antagonist SAR405838 combined with the MEK inhibitor pimasertib in patients with advanced solid tumours. Br. J. Cancer 120 (3): 286–293.

      38 38 Brown, Z.Z., Akula, K., Arzumanyan, A. et al. (2012). A spiroligomer α‐helix mimic that binds HDM2, penetrates human cells and stabilizes HDM2 in cell culture. PLoS One 7 (10): e45948.

      39 39 Brown, Z.Z. and Schafmeister, C.E. (2010). Synthesis of hexa‐ and pentasubstituted diketopiperazines from sterically hindered amino acids. Org. Lett. 12 (7): 1436–1439.

      40 40 Schafmeister, C.E., Brown, Z.Z., and Gupta, S. (2008). Shape‐programmable macromolecules. Acc. Chem. Res. 41 (10): 1387–1398.

      41 41 MK‐1602 Clinical trials. https://clinicaltrials.gov/ct2/results?term=MK‐1602&age_v=&gndr=&type=&rslt=&phase=2&Search=Apply (accessed September 2019).

      42 42 Bell, I.M. (2014). Calcitonin gene‐related peptide receptor antagonists: new therapeutic agents for migraine. J. Med. Chem. 57 (19): 7838–7858.

      43 43 Johansson, A., Löfberg, C., Antonsson, M. et al. (2016). Discovery of (3‐(4‐(2‐Oxa‐6‐azaspiro[3.3]heptan‐6‐ylmethyl)phenoxy)azetidin‐1‐yl)(5‐(4‐methoxyphenyl)‐1,3,4‐oxadiazol‐2‐yl)methanone (AZD1979), a melanin concentrating hormone receptor 1 (MCHr1) antagonist with favorable physicochemical properties. J. Med. Chem. 59 (6): 2497–2511.

      44 44 Högberg, T., Frimurer, T.M., and Sasmal, P.K. (2012). Melanin concentrating hormone receptor 1 (MCHR1) antagonists — still a viable approach for obesity treatment? Bioorg. Med. Chem. Lett. 22 (19): 6039–6047.

      45 45 Bingham, M. and Rankovic, Z. (2012). Chapter 18 medicinal chemistry challenges in CNS drug discovery. In: Drug Discovery for Psychiatric Disorders (eds. Z. Rankovic, R. Hargreaves and M. Bingham), 465–509. The Royal Society of Chemistry.

      46 46 Lavey, B.J., Kozlowski, J.A., Shankar, B.B. et al. (2007). Optimization of triaryl bis‐sulfones as cannabinoid‐2 receptor ligands. Bioorg. Med. Chem. Lett. 17 (13): 3760–3764.

      47 47 Ishikawa, M. and Hashimoto, Y. (2011). Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J. Med. Chem. 54 (6): 1539–1554.

      48 48 Carreira, E.M. and Fessard, T.C. (2014). Four‐membered ring‐containing spirocycles: synthetic strategies and opportunities. Chem. Rev. 114 (16): 8257–8322.

      49 49 Baell, J.B. and Holloway, G.A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53 (7): 2718–2740.

      50 50 Reboul, M. (1878). Oxyde de Propylene Normal et Polyoxypropylenes. Ann. Chim. (Paris) 14: 495–497.

      51 51 Bull, J.A., Croft, R.A., Davis, O.A. et al. (2016). Oxetanes: recent advances in synthesis, reactivity, and medicinal chemistry. Chem. Rev. 116 (19): 12150–12233.

      52 52 Ringnér, B., Sunner, S., and Watanabe, H. (1971). The enthalpies of combustion and formation of some 3,3‐disubstituted oxetanes. Acta Chem. Scand. 25: 141–146.

      53 53 Pritchard, J.G. and Long, F.A. (1958). The kinetics of the hydrolysis of trimethylene oxide in water, deuterium oxide and 40% aqueous dioxane1. J. Am. Chem. Soc. 80 (16): 4162–4165.

      54 54 Rogers‐Evans, M., Knust, H., Plancher, J.‐M. et al. (2014). Adventures in drug‐like chemistry space: from oxetanes to spiroazetidines and beyond! CHIMIA Int. J. Chem. 68 (7‐8): 492–499.

      55 55 Wuitschik, G., Rogers‐Evans, M., Buckl, A. et al. (2008). Spirocyclic oxetanes: synthesis and properties. Angew. Chem. Int. Ed. 47 (24): 4512–4515.

      56 56 Burkhard, J.A., Wuitschik, G., Plancher, J.‐M. et al. (2013). Synthesis and stability of oxetane analogs of thalidomide and lenalidomide. Org. Lett. 15 (17): 4312–4315.

      57 57 Dewdney, N.J., Kennedy‐Smith, J., Kondru, R.K., et al. (2009). Inhibitors of Bruton's tyrosine kinase ‐ Google patents. US Patent 20090306041A1.

      58 58 Grue‐Sørensena, G., Liang, X., Högberga, T., et al. (2012). Ingenol‐3‐acylates iii and ingenol‐3‐carbamates ‐ Google patents. WO Patent 2012083953A1.

      59 59 GmbH, G., Gruss, M., Kluge, S., and Pruehs, S. (2013). Crystalline (1R,4R)‐6'‐Fluoro‐N,N‐dimethyl‐4‐phenyl‐4',9'‐dihydro‐3'H‐spiro[cyclohexane‐1,1'‐pyrano[3,4,b]indolo]‐4‐amine ‐ Google patents.

Скачать книгу