Earth Materials. John O'Brien

Чтение книги онлайн.

Читать онлайн книгу Earth Materials - John O'Brien страница 41

Earth Materials - John  O'Brien

Скачать книгу

unsatisfied negative charges and the attraction of additional ions to build additional coordination polyhedra ad infinitum, until the conditions for growth cease to exist. It is useful to visualize minerals in terms of major anions and anion groups and/or radicals bonded to various cations that effectively neutralize their charge during the formation and growth of minerals. One common way to group or classify minerals is to do so in terms of the major anion group in the mineral structure. Those that contain (SiO4)−4 silica tetrahedra, discussed in the previous section, are silicate minerals, by far the most common minerals in Earth's crust and upper mantle. Those that do not contain silica tetrahedra are nonsilicate minerals and are further subdivided on the basis of their major anions. Table 2.7 summarizes the common mineral groups according to this classification system. These groups are discussed in more detail in Chapter 5.

Schematic illustration of a silica tetrahedron is formed when four oxygen ions (O-2) bond to one silicon ion (Si plus 4) in the form of a tetrahedron.
Mineral group Major anion groups Mineral group Major anion groups
Native elements None Nitrates (NO3)−1
Halides F−1, Cl−1, Br−1 Borates (BO3)−3 and (BO4)−5
Sulfides S−2, S−4 Sulfates (SO4)−2
Arsenides As−2, As−3 Phosphates (PO4)−3
Sulfarsendies As−2 or As−3 and S−2 or S−4 Chromates (CrO4)−5
Selenides Se−2 Arsenates (AsO4)−3
Tellurides Te−2 Vanadates (VO4)−3
Oxides O−2 Molybdates (MO4)−2
Hydroxides (OH)−1 Tungstates (WO4)−2
Carbonates (CO3)−2 Silicates (SiO4)−4

      Oxygen (O) and silicon (Si) are the two most abundant elements in Earth's continental crust, oceanic crust and mantle. Under the relatively low pressure conditions that exist in the crust and the upper mantle, the most abundant rock‐forming minerals (Chapter 5) are silicate minerals. Silicate minerals, characterized by the presence of silicon and oxygen that have bonded together to form silica tetrahedra, are utilized here to show how coordination polyhedra are linked to produce larger structures with the potential for the long‐range order characteristic of all minerals.

      2.5.1 The basics: silica tetrahedral linkage

      Many factors influence the type of silica tetrahedral structure that develops when silicate minerals form; the most important is the relative availability of silicon and other cations in the environment in which the mineral crystallizes. Environments with abundant silicon (and therefore silica tetrahedra) tend to favor the linkage of silica tetrahedra through shared oxygen ions. Environments depleted in silicon tend to favor the linkage of the oxygen ions in silica tetrahedra to cations other than silicon. In such situations, silica tetrahedra tend to link to coordination polyhedral elements other than silica tetrahedra.

      If none of the oxygen ions in a silica tetrahedron bond to other silicon ions in adjacent tetrahedra, the silica tetrahedron will occur as an isolated tetrahedral unit in the mineral structure. If all the oxygen ions in a silica tetrahedron bond to other silicon ions of adjacent tetrahedra, the silica tetrahedra form a three‐dimensional framework structure. If some of the oxygen ions in the silica tetrahedra are bonded to silicon ions in adjacent tetrahedra and others are bonded to other cations in adjacent coordination polyhedra, a structure that is intermediate between totally isolated silica tetrahedra and three‐dimensional frameworks of silica tetrahedra will develop.

Скачать книгу