.

Чтение книги онлайн.

Читать онлайн книгу - страница 31

Автор:
Жанр:
Серия:
Издательство:
 -

Скачать книгу

resource for including macroelements such as Na, K, Mg, and Ca [47, 67] and microelements as Se, Zn, Mn, and Cu into the human diet [47, 68]. It is a grain rich in vitamins B1 and B2 [69, 70]. The significant contents and potential antioxidant activities of rutin and other polyphenols are very important for the dietary value of buckwheat [47, 69, 71]. In its grains and hulls, 6 flavonoids have been identified, including rutin, quercetin, orientin, vitexin, isoorientin, and isovitexin. On the other hand, only rutin and isovitexin have been determined in buckwheat seeds [51, 59, 72].

      The consumption of buckwheat and buckwheat products is associated with many healthy biological activities including antidiabetic, anticancer, hypocholesterolemic, anti-inflammatory, neuroprotective, and hypotensive effect. Buckwheat proteins and polyphenols are supposed to be responsible for these effects [73, 74]. It has been accepted that some of the effects mentioned can be related to these two compounds in buckwheat. However, recently identified action mechanisms may also be exerting the health-promoting benefits that have been observed in cases of buckwheat consumption [74–76].

      3.2.3 Oat

      In the daily diet, the consumption of oats, which contain β-glucan polysaccharides, various dietary fiber components, and antioxidant compounds like tocopherol, wields a positive influence on consumer health and decreases the risks of various illnesses and malignancies [104]. In many studies, the valuable fiber components in oats were found to exert both therapeutic and protective activities against cardiovascular diseases, type-2 diabetes mellitus, and various types of cancer, like colon cancer [105–109]. The β-glucans found in oats are reported to have an association with oat’s ability to lower blood cholesterol levels [109]. New data also show that oats positively affect body weight and blood pressure [79].

      3.2.4 Barley

      Barley grains primarily comprise the husk, the embryo, and the endosperm, consisting of the aleurone and of endosperm cells, which are starchy [123]. The husk is the outer layer of the barley and forms 10%–13% of the grain weight [123, 124]. The embryo is made up of an acrospire, which is a nodal region located in between the shoot and root, as well as a primary root, which is enclosed by a root sheath known as the coleorhiza. Embryos are disconnected from the endosperm during germination by the modified cotyledon (the scutellum) [123, 125]. The endosperm comprises a starchy part and a layer of aleurone around it. The endosperm constitutes the major unit of a barley grain, representing 75% of a grain’s weight [123, 124]. The endosperm’s task is to function like a starchy storage center for nutrients that embryos can utilize in the process of germination [99, 123]. The cells in the aleurone layer include lipids, protein, minerals, and vitamins [123, 124, 126, 127]. Aleurone cells are isodiametric, which is different from the endosperm cells. Apart from the embryo, the sole unit of the grain that contains

Скачать книгу