Fractures in the Horse. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Fractures in the Horse - Группа авторов страница 63

Fractures in the Horse - Группа авторов

Скачать книгу

of muscular swelling or a sympathetic cutaneous response the target area can usually be identified.

      The initial radiographic study should aim to establish the precise location and configuration of the fracture and indicate the possibility of accompanying injuries. This information will direct appropriate management.

      Stress Fractures

      It had been suggested that the term stress fracture be restricted to cases of osseous structural failure detected radiographically by a fracture line and that the term stress reaction be used to describe the series of changes in bone pathophysiology associated with repetitive loading [19]. As identification of a discrete fracture line is temporally and modality dependent, an accurate description is fundamental to interpretation.

      If a fracture is identified, this provides a risk bracket for the patient which assists with management strategies and whether the nature of the changes supports radiographic monitoring. If the radiographs are negative, depending upon the area, it may be advisable to repeat radiographic examination in 7–14 days and/or consider an alternative imaging modality.

      Articular Fractures

      A fracture is considered articular if it communicates with a joint. From a radiographic perspective, this involves discontinuity in subchondral bone and by implication overlying cartilage. A high index of suspicion for articular involvement can be raised with the presence of synovial distension. Articular involvement can have a major impact on case management and prognosis and, when suspected, radiographs should be carefully scrutinized using lesion‐oriented oblique projections.

      Slab fractures connect two, usually proximal and distal, articular surfaces of cuboidal bones. Third carpal and central and third tarsal bones are most commonly affected. Dorsoproximal–dorsodistal (skyline) radiographs of the proximal and distal rows of the tarsal bones are not possible, which can make identification and determination of configuration difficult particularly with respect to the central tarsal bone. CT has made a major contribution to the database of injuries, and knowledge of common configurations aids radiographic evaluation (Chapter 29).

      Fissure Fractures

      Fissure fractures are unicortical or involve a single subchondral bone plate. Beam angle is critical to identification, and multiple slight variations in projection orientation should be made if a fracture is suspected but not identified (Figure 5.4a and b).

      Avulsion Fractures

      Avulsion fractures represent disruption of all or part of an enthesis. They can happen at any location and may be monotonic or fatigue related. The radiographic findings are related to the area of involvement and time frame of the injury.

      Compression Fractures

      Acute, minimally displaced, compression fractures can be difficult to identify, and time for associated osseous resorption and/or callus production may be necessary for confident diagnosis.

      Accompanying Features

      Soft Tissue Swelling

      The degree and nature of soft tissue swelling, whether intra‐capsular, extra‐capsular, focal or diffuse, with accompanying effacement of facial planes or fat pads, can help focus on a region of interest. For example, radiographs of a transverse stress fracture of the distal third metacarpal bone may initially reveal no osseous disruption and show only a subtle adjacent soft tissue swelling. Over ensuing weeks, the radiographs can progress dramatically (Chapter 22). Following a skull fracture, haemorrhage in the guttural pouches can obliterate the normal gas lucency which is replaced by soft tissue opacity or produce a fluid line secondary to a gas–fluid interface. Accompanying features of ventral deviation of the dorsal pharyngeal wall and dorsoventral attenuation of the nasopharynx may also be visible.

      Presence of Gas Lucency

      Monitoring Fracture Healing

      One of the most obvious but salient requirements of follow‐up radiographs is that the images must be comparable to those taken previously. Small changes in position can result in the X‐ray photon beam not being parallel to the fracture plane. Endosteal and periosteal new bone formation can also appear to be reducing or increasing. Both errors lead to incorrect conclusions which in turn can compromise case management.

      Healing and remodelling of fracture margins occur simultaneously. Even with internal fixation and primary healing (Chapter 6), there is often initial resorption along the fracture line. It is important to establish an expected time frame for uncomplicated fracture healing for individual sites. For example, bone

Скачать книгу