Fractures in the Horse. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Fractures in the Horse - Группа авторов страница 77

Fractures in the Horse - Группа авторов

Скачать книгу

precise apposition and/or rigid fixation are not completely achieved. The classic phases of fracture healing, including progression from haematoma to creation of soft callus, formation of hard callus and ultimately bone remodelling, follow in sequential order as mechanical stability increases. Further in the chapter, secondary healing is used as a model to explain the physiologic progression of bone healing.

      In reality, many fractures have a combination of primary and secondary healing [2]. Although most fracture repairs appear clinically stable, they are all likely to have some areas of imperfect apposition in which secondary healing occurs. In equine fracture repair, gap healing can occur either throughout an entire fracture or within parts of the repair as precise anatomic alignment and absolute mechanical stability are often impossible. This is an important principle as micromotion can produce significant stress on, and ultimately result in, failure of implants.

      Appropriately stabilized fractures heal with primary, a combination of primary and secondary or secondary healing. However, over‐stabilized (which almost never happens in horses) and under‐stabilized repairs (which is more common in horses) can lead to derangements in healing [5]. Over‐stabilized repairs, which can occur in man and small animals, remove mechanical strain that is needed to stimulate a healing cascade in the fracture environment. Reduced strain leads to a poor physiologic response and tissue atrophy.

      Derangements in fracture healing may be produced by all and any influencing factors. These are broadly classified as delayed, non‐ and mal‐unions. Delayed union occurs when the repair process is slower than normal. Non‐union occurs when the fracture fails to heal radiographically [6]. There are several types of non‐union fracture characteristics that reflect the individual processes that negatively affect healing. Mal‐union occurs when the fracture heals with abnormal fragment orientation.

      The classic stages of bone healing have been known for decades and provided the guiding principles for fracture repair. However, it has become apparent that these are not finite and that individual fractures are likely to exhibit variations in the intensity and duration of each stage. For any type of tissue to heal, there are several basic requirements. Progenitor cells must migrate into the damaged area either from local or systemic sources [7, 8]. Extracellular matrix needs to be produced by local clotting factors, clotting cascades and progenitor cell production [2]. Growth factors are necessary to induce differentiation of progenitor cells into the desired cell type that may be vascular, chondrocytic, osteoclastic or osteoblastic [2]. Adequate blood supply is also necessary to provide appropriate oxygen tension, nutrients and, specifically for bone, minerals [2]. The coordination of these events impacts the quality of healing and resulting function.

      Schematic illustration of the process of secondary bone healing is a coordinated cascade of biological and mechanical influences leading to progression of bone union. (a) Haematoma/inflammatory phase. Schematic illustration of the process of secondary bone healing is a coordinated cascade of biological and mechanical influences leading to progression of bone union. (a) Haematoma/inflammatory phase.

      Source: Modified from Walters et al. [9].

      (b) Soft callus phase.

      Source: Based on Sathyendra and Darowish [10].

      (c) Hard callus phase.

      Source: Based on Aro and Chao [11]; Kwong and Harris [12].

      (d) Remodelling phase.

      Source: Based on Sathyendra and Darowish [10].

      In considering the physiological environment of fracture healing, both the condition of the bone and the surrounding soft tissues must be taken into account. In the majority of animals, the most common cause of fracture is an acute traumatic episode in which either external or internal forces lead to bone failure. However, in the equine athlete, there is strong evidence to show that many fractures occur within pathologic bone [13, 14], and its influence on bone healing must be taken into consideration. It is expected that healing of compromised bone is not the same as normal bone. The influence of the individual problem (vitality, remodelling, demineralization, hypermineralization, osteopenia, etc.) and treatment on prognosis requires consideration.

      The goal of this section is to introduce the basic building blocks for understanding the processes of bone healing. This includes an understanding of the importance of vascularity, the role of inflammatory cells and the immune complex within the healing environment, the role of progenitor cells that are released within or migrate to the area, the importance of the extracellular matrix and biochemical factors that influence healing.

      Bone follows the same basic healing processes as other tissues. Immediately following the insult/bone failure, the immune system responds not only to remove damaged tissue but also to signal a number of cellular processes. The immune system is integrated with the osteoresponsive cascade as immune‐based cells, namely macrophages and monocytes, not only stimulate vascular, osteoblastic and osteoclastic responses, but can also form into osteoclastic cells [15].

      At a cellular level, the biological and mechanical environments are interconnected. The process in which the mechanical environment influences cell processes and development is termed developmental mechanics [5]. Relatively unstable environments induce cellular mechanisms that can delay or inhibit healing and vice versa. There is an emerging

Скачать книгу