Polar Organometallic Reagents. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Polar Organometallic Reagents - Группа авторов страница 20

Polar Organometallic Reagents - Группа авторов

Скачать книгу

catalyst to give the corresponding ketone 72. This avoidance of the use of a noble metal catalyst was advantageous not only on cost grounds but also on account of the strict guidelines that regulate trace amounts of transition metals in pharmaceuticals. In contrast to the reaction of 2‐iodoanisole with lithium trimethylzincate 54, which gave the corresponding alcohol in a low yield of 29% upon introduction of benzaldehyde, the use of tri(tert‐butyl)zincate 65 enabled the corresponding reaction in the much higher yield of 83%.

Schematic illustration of treatment of methyl 4-iodobenzoate with 65 preceded allylation (with allyl iodide) and acylation (with catalyst-free benzoyl chloride). Schematic illustration of addition reaction involving the transmetalation of putative lithium di(tert-butyl)phenylzincate 73 with thienylcyanocuprate. Schematic illustration of molecular structures of (a) solvated (DMBA)3ZnLi 76 and (b) (DMBA)4ZnLi2 77, which can be selectively targeted by modulating the (DMBA)2Zn:DMBALi ratio in reaction.

      Sources: Adapted from Wyrwa et al. [91]; Rijnberg et al. [92].

Schematic illustration of competing SIP and CIP formation in Me3ZnLi chemistry.

       1.3.3 Cuprates

      Copper‐based organometallic complexes are the organotransition metal reagents most widely used as soft nucleophiles in organic synthesis. Hence, both organocopper and organocuprate reagents are employed for carbon–carbon bond formation owning to their characteristic reactivities in conjugate addition to α,β‐unsaturated carbonyl compounds, in substitution reactions, and in the carbometalation of carbon–carbon triple bonds. Although both organocopper and organocuprate reagents are well established as tolerating a wide range of electrophilic functional groups, the formation of functionalized organocopper reagents has not proved promising. This has largely been because transmetalation of nucleophilic organolithium or Grignard reagents has typically been required and this has been limited by functional group tolerance. In a similar vein, functionalized organocopper reagents have been prepared by the transmetalation of functionalized organozinc compounds and by direct oxidative addition of active copper, prepared from CuI(PBu3) and lithium naphthalenide, to organic halides [105]. A number of so‐called Gilman reagents – lithiocuprates of general formula R2CuLi – have been used in organic syntheses. Mixed cuprates, R2Cu(CN)Li2, have also been reported to show high reactivity towards a variety of organic substrates. Though the halogen–metal exchange reaction is one of the most useful processes for the preparation of metalated arenes,

Скачать книгу