Polar Organometallic Reagents. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Polar Organometallic Reagents - Группа авторов страница 30

Polar Organometallic Reagents - Группа авторов

Скачать книгу

dimer (Figure 1.31). At the same time, variation of the amido component was probed, with (HMDS)2Ag(CN)Li2(THF) (180, HMDS = hexamethyldisilamide), (DA)2Ag(CN)Li2(THF) 181, and (Cy2N)2Ag(CN)Li2(THF) (182, Cy = cyclohexyl) all being formed but only 179 and 182 proving effective in proof‐of‐concept iodinations of N,N‐diisopropylbenzamide. Thereafter, 179 was deployed in a range of directed ortho‐deprotometalations using various DMG and ancillary functional group (FG) permutations (Scheme 1.36). Work demonstrated the ability to use tertiary carboxylic amide DMGs of variable lability (yielding 183185). The success of nitrile (giving 186) and methyl ester (giving 187) DMGs was remarkable given their incompatibility with e.g. organolithiums. Likewise, in contrast to the difficulty of metalating nitroarenes using traditional strong bases [243], and the fact that this has hitherto been achievable using only specific substrates [244], 188 and 189 were now smoothly generated by 179. Notably, the yield of 188 (80%) contrasted with just 6% obtained when using 159. Elsewhere (forming 190192), ancillary styrene‐type FGs could be employed without detectable polymerization, while halides and pseudohalides were tolerated, enabling the demonstration that OTf [(trifluoromethanesulfonyl)oxy] could survive a deprotonative metalation sequence [245].

Schematic illustration of the dimer of lithium argentate (TMP)2Ag(CN)Li2(THF) 179. Schematic illustration of examples of directed deprotometalation using lithium argentate 179. Schematic illustration of molecular structure of the dimer of2AgLi(THF) 193.

      Source: Adapted from Tezuka et al. [245].

Schematic illustration of lithium argentate 179 shows good functional group tolerance when making sulfides while the oxidative inertness of silver avoids biaryl production when making azo compounds.

      1 1 Schlosser, M. (2005). Angew. Chem. Int. Ed. 44: 376–393.

      2 2 Boudier, A., Bromm, L.O., Lotz, M., and Knochel, P. (2000). Angew. Chem. Int. Ed. 39: 4414–4435.

      3 3 Knochel, P. and Jones, P. (1998). Organozinc Reagents. Oxford University Press.

      4 4 Gschwend, H.W. and Rodriguez, H.R. (1979). Org. React. 26: 1–360.

      5 5

Скачать книгу