Geophysical Monitoring for Geologic Carbon Storage. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Geophysical Monitoring for Geologic Carbon Storage - Группа авторов страница 40
3 Chatelain, J.‐L., Roecker, S. W., Hatzfeld, D., & Molnar, P. (1980). Microearthquake seismicity and fault plane solutions in the Hindu Kush region and their tectonic implications. Journal of Geophysical Research, 85(B3), 1365–1387.
4 Coblentz, D., Lee, R., Wilson, J., & Bradley, C. (2014). Kimberlina, California site characterization for applications to potential induced seismicity. Technical Report. Los Alamos National Laboratory.
5 Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., & Keller, W. (2010). Comparison of surface and borehole locations of induced seismicity. Geophysical Prospecting, 58(5), 809–820. https://doi.org/10.1111/j.1365‐2478.2010.00867.x
6 Ellsworth, W. L. (2013). Injection‐induced earthquakes. Science, 341(6142). https://doi.org/10.1126/science.1225942
7 Gomberg, J. S., Shedlock, K. M., & Roecker, S. W. (1990). The effect of S‐wave arrival times on the accuracy of hypocenter estimation. Bulletin of the Seismological Society of America, 80(6A), 1605–1628.
8 Husen, S., Kissling, E., Deichmann, N., Wiemer, S., Giardini, D., & Baer, M. (2003). Probabilistic earthquake location in complex three‐dimensional velocity models. Journal of Geophysical Research: Solid Earth, 108(B2). https://doi.org/10.1029/2002JB001778
9 Kaven, J. O., Hickman, S. H., McGarr, A. F., & Ellsworth, W. L. (2015). Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site. Seismological Research. Letters, 86(4), 1096–1101. https://doi.org/10.1785/0220150062
10 Kijko, A. (1977a). An algorithm for the optimum distribution of a regional seismic network: I, Pure and Applied Geophysics, 115(4), 999–1009.
11 Kijko, A. (1977b). An algorithm for the optimum distribution of a regional seismic network: II, an analysis of the accuracy of location of local earthquakes depending on the number of seismic stations. Pure and Applied Geophysics, 115(4), 1011–1021.
12 Kissling, E. (1988). Geotomography with local earthquake data. Reviews of Geophysics, 26(4), 659–698.
13 Lin, G., & Shearer, P. (2005). Tests of relative earthquake location techniques using synthetic data. Journal of Geophysical Research, 110(B4). https://doi.org/10.1029/2004JB003380
14 Maxwell, S. C., & Urbancic, T. I. (2001). The role of passive microseismic monitoring in the instrumented oil field. The Leading Edge, 20(6), 636–639.
15 Miyazawa, M., Venkataraman, A., Snieder, R., & Payne, M. A. (2008). Analysis of microearthquake data at Cold Lake and its applications to reservoir monitoring. Geophysics, 73(3), 15–21.
16 Oye, V., Aker, E., Daley, T. M., Kühn, D., Bohloli, B., & Korneev, V. (2013). Microseismic monitoring and interpretation of injection data from the in Salah CO2 storage site (Krechba), Algeria. Energy Procedia, 37, 4191–4198. https://doi.org/10.1016/J.EGYPRO.2013.06.321
17 Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1), 43–71.
18 Pesicek, J. D., Child, D., Artman, B., & CieśBlik, K. (2014). Picking versus stacking in a modern microearthquake location: Comparison of results from a surface passive seismic monitoring array in Oklahoma. Geophysics, 79(6), KS61–KS68. https://doi.org/10.1190/geo2013‐0404.1
19 Rabinowitz, N., & Steinberg, D. M. (1990). Optimal configuration of a seismographic network: A statistical approach. Bulletin of the Seismological Society of America, 80(1), 187–196.
20 Steinberg, D. M., Rabinowitz, N., Shimshoni, Y., & Mizrachi, D. (1995). Configuring a seismographic network for optimal monitoring of fault lines and multiple sources. Bulletin of the Seismological Society of America, 85(6), 1847–1857.
21 Stork, A., Nixon, C., Hawkes, C., Birnie, C., White, D., Schmitt, D., & Roberts, B. (2018). Is CO2 injection at Aquistore aseismic? A combined seismological and geomechanical study of early injection operations. International Journal of Greenhouse Gas Control, 75, 107–124. https://doi.org/10.1016/J.IJGGC.2018.05.016
22 Takagishi, M., Hashimoto, T., Toshioka, T., Horikawa, S., Kusunose, K., Xue, Z., & Hovorka, S. D. (2017). Optimization study of seismic monitoring network at the CO2 injection site: Lessons learnt from monitoring experiment at the Cranfield Site, Mississippi, U.S.A. Energy Procedia, 114, 4028–4039. https://doi.org/10.1016/J.EGYPRO.2017.03.1543
23 Verdon, J. P., Kendall, J.‐M., & White, D. J. (2012). Monitoring carbon dioxide storage using passive seismic techniques. Proceedings of the Institution of Civil Engineers: Energy, 165(2), 85–96. https://doi.org/10.1680/ener.10.00018
24 Verdon, J. P., Kendall, J.‐M., White, D. J., Angus, D. A., Fisher, Q. J., & Urbancic, T. (2010). Passive seismic monitoring of carbon dioxide storage at Weyburn. The Leading Edge, 29(2), 200–206.
25 Wagoner, J. (2009). 3D geologic modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina demonstration project: A status report. Lawrence Livermore National Laboratory LLNL‐TR‐410813.
26 Waldhauser, F., & Ellsworth, W. L. (2000). A double‐difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006
27 Walter, A. W., & Mooney, W. D. (1987). Interpretations of the SJ‐6 seismic reflection/refraction profile, south central California, USA. USGS Open‐File Report 87–73.
28 Wuestefeld, A., Greve, S. M., Näsholm, S. P., & Oye, V. (2018). Benchmarking earthquake location algorithms: A synthetic comparison. Geophysics, 83(4), KS35–KS47. https://doi.org/10.1190/geo2017‐0317.1
29 Zhang, H., & Thurber, C. H. (2003). Double‐difference tomography: The method and its application to the Hayward fault. California. Bulletin of the Seismological Society of America, 93(5), 1875–1889.
5 Seismic Response of Fractured Sandstone During Geological Sequestration of CO2 : Laboratory Measurements at Mid (Sonic) Frequencies and X‐Ray CT Fluid Phase Visualization
Seiji Nakagawa and Timothy Kneafsey
Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
ABSTRACT