3D Printing of Foods. C. Anandharamakrishnan

Чтение книги онлайн.

Читать онлайн книгу 3D Printing of Foods - C. Anandharamakrishnan страница 16

3D Printing of Foods - C. Anandharamakrishnan

Скачать книгу

dual print simultaneously (Van der Linden 2015). One of the advantageous features of this particular design is its less floor space requirement and its ability to print larger‐sized objects. In contrast to other configurations, polar printers can rotate and move either forward/backward and sideways. The rare availability of this type makes them expensive as it costs more than twice as that of cartesian (Derossi et al. 2019).

      In addition to the above context, based on the structural configuration, 3D printers are also termed as triangle structure (Prusa printer), triangle‐claw structure (Rostock printer), rectangle‐cassette structure (Ultimaker printer), and rectangle‐pole structures (Printrobot printer) (Yang et al. 2017). With these basic configurations, 3D printers are modified and adapted for food applications. In general, food 3D printing must address the following key considerations since food material is being printed, the entire components must be food‐grade; printer parts must be resistant to corrosion and should possess enough strength to wear and tear. Different printers have been studied for the printing of various food materials by several researchers. A commercial 3D printer Felix 3.0 originally designed for polymer printing was modified with a motor‐driven system and adapted for extrusion‐based food printing (Chen et al. 2019). Researchers used this modified system for printing soy protein gels and studied the effect of hydrocolloids on strength of 3D printed protein matrix. In another study, researchers were attempted to develop a multi extruder system that can be applied for printing 3D constructs from multi‐material which has precise control over material deposition. A commercial food 3D printer, FoodBot developed by Changxing Shiyin Technology Co. Ltd. (China) was modified in this study and used for dual extrusion of composite food gel (Liu et al. 2018). 3D printed edible circuits from bread substrate were developed from a commercial desktop 3D printer, BioBot 1 (extrusion printer) (Hamilton et al. 2018). Researchers are exploring the advancements of 3D printers for food printing by modifying the structure and design of commercial 3D printers. Likewise, many studies are being conducted for the applicability and suitability of materials for 3D printing in context with printing multi‐materials using multi‐head printing systems.

      The basic components of a food 3D printer include printing movement arms, drive unit assisted with pulley mechanism, mechanical motors and feed rollers, material dispensing unit, temperature controlling system, printing head, printing platforms, and micro‐processing controller unit (Nachal et al. 2019).

Schematic illustration of operation of delta type 3D printer.

      Source: Derossi et al. (2019) / With permission of Elsevier.

      Source: From Derossi et al. (2019) / With permission of Elsevier.

Скачать книгу