Electronics All-in-One For Dummies. Doug Lowe

Чтение книги онлайн.

Читать онлайн книгу Electronics All-in-One For Dummies - Doug Lowe страница 41

Electronics All-in-One For Dummies - Doug Lowe

Скачать книгу

simple coin-toss circuit.

image

      FIGURE 6-4: The schematic diagram for the coin-toss circuit after it has been modified a bit for our project.

Part ID Description
R1 1 kΩ, ¼ W resistor
R2 10 kΩ, ¼ W resistor
R3 470 Ω, ¼ W resistor
R4 470 Ω, ¼ W resistor
C1 0.1 μF capacitor
LED1 5 mm red LED
LED2 5 mm green LED
IC1 555 timer IC
SW1 Momentary-contact, normally open push button
image

      FIGURE 6-5: A schematic diagram that indicates which components are on the main circuit board and which aren’t.

      Before you commit your circuit to a permanent circuit board, you want to make sure it works. The easiest way to do that is to build the circuit on a solderless breadboard. The solderless breadboard lets you quickly assemble the components of your circuit without soldering anything. Instead, you just push the bare wire leads of the various components you need into the holes on the breadboard and then use jumper wires to connect the components together.

image

      FIGURE 6-6: A typical solderless breadboard.

      Understanding how solderless breadboards work

image

      FIGURE 6-7: The contact holes in typical solderless breadboards are internally connected following this pattern.

      The holes in the middle portion of a solderless breadboard are connected in groups of five that are called terminal strips. These terminal strips are arranged in two groups, with a long open slot between the two groups, like a little ditch. It is in these holes that you will connect components such as resistors, capacitors, diodes, and integrated circuits.

      It’s important to note that the rows of holes are not connected across the ditch. Thus, each row comprises two electrically separate terminal strips: one that connects the holes labeled A through E, the other connecting the holes labeled F through J.

      The holes on the outside edges of the breadboard are called bus strips. There are two bus strips on either side of the breadboard. For most circuits, you will use the bus strips on one side of the breadboard for the voltage source and use the bus strips on the other side of the board for the ground circuit.

      Most solderless breadboards use numbers and letters to designate the individual connection holes in the terminal strips. In Figure 6-7, the rows are labeled with numbers from 1 through 30, and the columns are identified with the letters A through J. Thus, the connection hole in the top-left corner of the terminal strip area is A1, and the hole in the bottom-right corner is J30. The holes in the bus strips are not typically numbered.

      Solderless breadboards come in several different sizes. Small breadboards usually have about 30 rows of terminal strips and about 400 holes altogether. But you can get larger breadboards, with 60 or more rows with 800 or more holes.

      Laying out your circuit

      The most difficult challenge of creating a circuit on a solderless breadboard is the task of translating a schematic diagram into a layout that can be assembled on the breadboard. Only in rare cases will a circuit assembled on a breadboard look like the circuit’s schematic diagram. In most cases, the components are arranged differently and jumper wires are required to connect the components together.

      Remember The key when assembling

Скачать книгу