Flexible Supercapacitors. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Flexible Supercapacitors - Группа авторов страница 25

Flexible Supercapacitors - Группа авторов

Скачать книгу

devices is PDMS. However, it possesses hydrophobic properties. Electrode materials with binder like PVDF covered on the PDMS usually need to face the detaching problem, which is not of benefit to the mechanical stability of the devices. A stretchable substrate that ensures electrode materials direct growth on it may be a great way to develop stretchable devices. (iii) More attention should be focused on the development of air stable gel electrolyte. Most of the existing all‐solid‐state gel electrolyte is water‐based polymer gel electrolyte, which have a short lifespan under air ambient conditions. How to improve the lifespan of the water‐based gel electrolyte in the further development of stretchable SCs must be a significant topic. (iv) The integration and encapsulation method is important for wearable integrated system. For the stretchable multifunctional integrated systems powered by SCs containing several kinds of stretchable devices, the integration and encapsulation method that makes every component work tuneful must be considered. The embedding method is a mature way but can't be the only one for packaging the integrated system. (v) More low‐cost fabrication technology for large scale production of stretchable SCs should be introduced to meet the requirement of the practical application. From the angle of actual application, the large‐scale production of stretchable SCs with low cost also should be considered. Overall, stretchable SCs have been proved as a promising energy storage to power the portable and wearable electronics and occupy an indispensable position in the future development and applications of wearable electronics.

      1 1 Li, Lou, Z., Chen, D. et al. (2018). Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 14 (43): e1702829.

      2 2 Lee, G., Kim, D., Kim, D. et al. (2015). Fabrication of a stretchable and patchable array of high performance micro‐supercapacitors using a non‐aqueous solvent based gel electrolyte. Energy Environ. Sci. 8 (6): 1764–1774.

      3 3 Hu, H., Pei, Z., and Ye, C. (2015). Recent advances in designing and fabrication of planar micro‐supercapacitors for on‐chip energy storage. Energy Storage Mater. 1: 82–102.

      4 4 Li, L., Wu, Z., Yuan, S. et al. (2014). Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7 (7): 2101–2122.

      5 5 Chu, X., Zhang, H., Su, H. et al. (2018). A novel stretchable supercapacitor electrode with high linear capacitance. Chem. Eng. J. 349: 168–175.

      6 6 Xu, J., Wu, H., Lu, L. et al. (2014). Integrated photo‐supercapacitor based on Bi‐polar TiO2 nanotube arrays with selective one‐side plasma‐assisted hydrogenation. Adv. Funct. Mater. 24 (13): 1840–1846.

      7 7 Chen, X., Lin, H., Chen, P. et al. (2014). Smart, stretchable supercapacitors. Adv. Mater. 26 (26): 4444–4449.

      8 8 Huang, Y., Liang, J., and Chen, Y. (2012). An overview of the applications of graphene‐based materials in supercapacitors. Small 8 (12): 1805–1834.

      9 9 Zheng, Y., Yang, Y., Chen, S. et al. (2016). Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm 18 (23): 4218–4235.

      10 10 Senthilkumar, B., Vijaya, S.K., Sanjeeviraja, C. et al. (2013). Synthesis and physico‐chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. J. Alloys Compd. 553: 350–357.

      11 11 Mahmood, Q., Park, S.K., Kwon, K.D. et al. (2016). Transition from diffusion‐controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 6 (1): n/a‐n/a.

      12 12 Hsia, B., Marschewski, J., Wang, S. et al. (2014). Highly flexible, all `solid‐state micro‐supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 25 (5): 055401.

      13 13 An, C.H., Wang, Y.J., Huang, Y.N. et al. (2014). Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique. Nano Energy 10: 125–134.

      14 14 Wu, H., Jiang, K., Gu, S. et al. (2015). Two‐dimensional Ni(OH)2 nanoplates for flexible on‐chip microsupercapacitors. Nano Res. 8 (11): 3544–3552.

      15 15 Yu, Z.‐Y., Chen, L.‐F., and Yu, S.‐H. (2014). Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J. Mater. Chem. A 2 (28): 10889.

      16 16 Li, L., Lou, Z., Han, W. et al. (2016). Flexible in‐plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications. Nanoscale 8 (32): 14986–14991.

      17 17 Ai, Y., Lou, Z., Li, L. et al. (2016). Meters‐long flexible CoNiO2‐nanowires@carbon‐fibers based wire‐supercapacitors for wearable electronics. Adv. Mater. Technol. 1 (8): 1600142.

      18 18 Zhao, X., Zheng, B., Huang, T. et al. (2015). Graphene‐based single fiber supercapacitor with a coaxial structure. Nanoscale 7 (21): 9399–9404.

      19 19 Wu, Z.S., Parvez, K., Feng, X. et al. (2013). Graphene‐based in‐plane micro‐supercapacitors with high power and energy densities. Nat. Commun. 4: 2487.

      20 20 Wu, Z.S., Feng, X., and Cheng, H.M. (2013). Recent advances in graphene‐based planar micro‐supercapacitors for on‐chip energy storage. Natl. Sci. Rev. 1 (2): 277–292.

      21 21 Liu, T., Zhang, F., Song, Y. et al. (2017). Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5 (34): 17705–17733.

      22 22 Beidaghi, M. and Wang, C. (2012). Micro‐supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22 (21): 4501–4510.

      23 23 Yan, C. and Lee, P.S. (2014). Stretchable energy storage and conversion devices. Small 10 (17): 3443–3460.

      24 24 Qi, D., Liu, Z., Liu, Y. et al. (2015). Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater. 27 (37): 5559–5566.

      25 25 Yun, J., Lim, Y., Jang, G.N. et al. (2016). Stretchable patterned graphene gas sensor driven by integrated micro‐supercapacitor array. Nano Energy 19: 401–414.

      26 26 Núñez, C.G., Navaraj, W.T., Polat, E.O. et al. (2017). Energy‐autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27 (18): 1606287.

      27 27 Liu, Z., Qi, D., Guo, P. et al. (2015). Thickness‐gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 27 (40): 6230–6237.

      28 28 Huang, Y., Huang, Y., Zhu, M. et al. (2015). Magnetic‐assisted, self‐healable, yarn‐based supercapacitor. ACS Nano 9 (6): 6242–6251.

      29 29 Chen, S., Lou, Z., Chen, D. et al. (2016). Polymer‐enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv. Mater. Technol. 1 (7): 1600136.

      30 30 Wang, K., Zhang, X., Li, C. et al. (2015). Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv. Mater. 27 (45): 7451–7457.

      31 31 Huang, Y., Zhong, M., Huang, Y. et al. (2015). A self‐healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6: 10310.

      32 32 Huang, Y., Zhong, M., Shi, F. et al. (2017). An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed. Engl. 56 (31): 9141–9145.

      33 33 Zhang, X., Zhang, H., Lin, Z. et al. (2016). Recent advances and challenges of stretchable supercapacitors

Скачать книгу