Plastic and Microplastic in the Environment. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Plastic and Microplastic in the Environment - Группа авторов страница 18

Plastic and Microplastic in the Environment - Группа авторов

Скачать книгу

that the Chinese Yangtze River catchment is the largest contributor, followed by the Ganges River catchment. With the growing awareness in recent years, some studies are focusing on Asian rivers (Blettler et al. 2018; van Emmerik et al. 2019a; Jambeck et al. 2015; OCMCBE 2015). Surface samplings at the Chinese Yangtze River mouth showed considerably higher plastic concentrations than any other sampled river worldwide (Zhao et al. 2014), with a reported 4137 particles per cubic meter. The significant differences between sampled estuarine concentrations and nearshore monitoring in the area confirmed that the Yangtze River is a major regional source of plastic input into the marine environment. Kataoka et al. (2019) reported of the MP concentrations on 29 Japanese river surfaces, which may be a source of MPs for the MP hotspot in the East Asian seas. They found MPs in 31 of the 36 sites and demonstrated that concentration of MPs in the river basins were dependent on population density, urbanization, and biological oxygen demand (BOD), which suggested that river water quality and plastic pollution in rivers are related.

      2.5.3 The Problem of Freshwater Microplastics in Developing Countries

      2.5.4 Status of India's Freshwater Plastic Problem

      In one of the first reports on MPs in the freshwater environments in India, Sruthy & Ramasamy (2017) studied the sediments of Vembanad Lake, a Ramsar site in India with low‐density polythene dominating the sediment samples. The authors pointed out that as the locals consume the aquatic fishes and clams from this lake, the fate of MPs entering humans via the food web is a potential threat. Ram & Kumar (2020) studied MPs from Sabarmati River sediments, where they reported that higher amount of MPs were observed in the river in areas near landfill sites from where the surface runoff might have carried the plastic debris to the river. Sarkar et al. (2019) estimated distribution of meso‐ and microplastics in the sediments of the lower reaches of the river Ganga, where they observed a relation between MPs abundance and other water quality parameters such as BOD. Karthik et al. (2018) studied MPs particles at beaches along the southeast coastal region of India, where they found the highest abundance of MPs on beaches adjacent to the river mouth. They also found the MPs in 10.1% of the 79 fishes they studied. Reddy et al. (2006) reported the observed plastic debris in the marine sediments on the coast of Gujarat, and a group of researchers reported plastic particles in the beaches of Mumbai (Jayasiri et al. 2013). Veerasingam et al. (2016) studied the MPs in surface sediments along the Chennai coast during March 2015 (pre‐Chennai flood) and November 2015 (post‐Chennai flood) and found that the MPs in the sediments increased threefold in post flooding, which may be due to huge input of MPs through the Cooum and Adyar rivers during the flood. This study highlights the importance of rivers as sources of plastic pollution to the marine environment.

Sl. No. Location Average concentration Method Sample type Size Polymer type References
1 River Ganga 11.48–63.79 ng/g FT‐IR Sediments 63–850 μm, 850 μm–5 mm PET, PE Sarkar et al. (2019)
2 Sabarmati River 134.53–581.70 mg/kg SEM Sediments 4 mm–75 μm Plastic debris and fibers Ram & Kumar (2020)
3 Vembanad Lake 0.27 g/l Raman Sediments 0.2–1 mm Sruthy & Ramasamy (2017)
4. Netravathi River 288 pieces/m3 (water), 96 pieces/kg (sediment) 84.45 pieces /kg (soil) Water, sediments, and soil 5–0.3 mm PE, PET Amrutha & Warrier (2020)

Скачать книгу