Computational Statistics in Data Science. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Computational Statistics in Data Science - Группа авторов страница 17

Computational Statistics in Data Science - Группа авторов

Скачать книгу

and Numerical Approximations & Optimization.

      Internet access to all of the articles presented here is available via the online collection Wiley StatsRef: Statistics Reference Online (Davidian, et al., 2014–2021); see https://onlinelibrary.wiley.com/doi/book/10.1002/9781118445112.

      From Deep Learning (Li, et al.) to Asynchronous Parallel Computing (Yan), this collection provides a glimpse into how computational statistics may progress in this age of big data and transdisciplinary data science. It is our fervent hope that readers will benefit from it.

      We wish to thank the fine efforts of the Wiley editorial staff, including Kimberly Monroe‐Hill, Paul Sayer, Michael New, Vignesh Lakshmikanthan, Aruna Pragasam, Viktoria Hartl‐Vida, Alison Oliver, and Layla Harden in helping bring this project to fruition.

Tucson, ArizonaSan Diego, California Tucson, ArizonaDavis, California Walter W. Piegorsch Richard A. Levine Hao Helen Zhang Thomas C. M. Lee

      1 Davidian, M., Kenett, R.S., Longford, N.T., Molenberghs, G., Piegorsch, W.W., and Ruggeri, F., eds. (2014–2021). Wiley StatsRef: Statistics Reference Online. Chichester: John Wiley & Sons. doi:10.1002/9781118445112.

Part I Computational Statistics and Data Science

       Andrew J. Holbrook1, Akihiko Nishimura2, Xiang Ji3, and Marc A. Suchard1

       1University of California, Los Angeles, CA, USA

       2Johns Hopkins University, Baltimore, MD, USA

       3Tulane University, New Orleans, LA, USA

      But Core Challenges 2 and 3 will also endure: data complexity often increases with size, and researchers strive to understand increasingly complex phenomena. Because many examples of big data become “big” by combining heterogeneous sources, big data often necessitate big models. With the help of two recent examples, Section 3 illustrates how computational statisticians make headway at the intersection of big data and big models with model‐specific advances. In Section 3.1, we present recent work in Bayesian inference for big N and big P regression. Beyond the simplified regression setting, data often come with structures (e.g., spatial, temporal, and network), and correct inference must take these structures into account. For this reason, we present novel computational methods for a highly structured and hierarchical model for the analysis of multistructured and epidemiological data in Section 3.2.

      The growth of model complexity leads to new inferential challenges. While we define Core Challenges 1–3 in terms of generic target distributions or objective functions, Core Challenge 4 arises from inherent difficulties in treating complex models generically. Core Challenge 4 (Section 4.1) describes the difficulties and trade‐offs that must be overcome to create fast, flexible, and friendly “algo‐ware”. This Core Challenge requires the development of statistical algorithms that

Скачать книгу