High-Performance Materials from Bio-based Feedstocks. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу High-Performance Materials from Bio-based Feedstocks - Группа авторов страница 25

High-Performance Materials from Bio-based Feedstocks - Группа авторов

Скачать книгу

properties. To satisfy the requirements for catalyzing a specific reaction, activated carbons can be treated with KOH or CaO via wet impregnation. The stability of such immobilized catalysts, however, is relatively low. To improve the performance of activated carbon, chemical treatment with oxidizing acids such as SO3H, H3PO4, or HNO3 is an interesting choice [119–121]. In view of the catalytic potential, sulfonated carbon catalysts are widely attractive in reactions such as hydrolysis, esterification, and transesterification. Sulfonated bio‐based carbon catalysts can be prepared by direct sulfonation or sulfonation via reductive alkylation/arylation reactions.

Schematic illustration of esterification of fatty acid.
Catalyst Feedstock Reaction conditions Yield (%) References
Alcohol:Oil Catalyst amount (wt%) Temperature (°C) Time
La2O3/CaO Jatropha oil 25 : 1 3 160 3 h 98.76 [112]
Li/CaO Jatropha oil 12 : 1 5 65 1–2 h >99 [113]
ZnO‐TiO2‐Nd2O3/ZrO2 Soybean oil 5.7 : 1 195 44 min 99 [104]
upper S upper O 4 Superscript 2 minus /SnO2 Waste cooking oil 15 : 1 3 150 3 h 92.3 [105]
Bio‐based carbon modified with Ni and Na2SiO3 Soybean oil 9 : 1 7 65 100 min 98.1 [114]
Sulfonated modified coconut meal residual Waste palm oil 12 : 1 5 65–70 10 h 92.7 [115]
Sulfonated modified carbonized coconut shell Palm oil 30 : 1 6 60 6 h 88.25 [116]
Sulfonated woody biochar Canola oil 30 : 1 7 315 3 h 48.1 [117]
Sulfonated carbonized bamboo Oleic acid 7 : 1 6 90 2 h 98.4 [111]
Calcium oxide from eggshell Waste cooking oil 6 : 1 5.8 Room temperature 11 h 97 [118]

      A drawback of the sulfonated bio‐based activated carbon catalyst is that its preparation process is environmentally unfriendly owing to the heating of carbon materials in concentrated sulfuric acid for an extended time. Apart from sulfuric acid, tribasic potassium phosphate (K3PO4) was recently used to activate carbon materials. The K3PO4 impregnated on the activated carbon catalyst benefited the biodiesel production from waste cooking oil. With 5% catalyst loading, the biodiesel yield was 98% in a 12 : 1 methanol‐to‐oil molar ratio at 60 °C for four hours. Only 20% reduction in biodiesel yield was observed when the catalyst was used for five reaction cycles [125].

Скачать книгу