High-Performance Materials from Bio-based Feedstocks. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу High-Performance Materials from Bio-based Feedstocks - Группа авторов страница 44
References
1 1. Sing, K.S.W., Everett, D.H., Haul, R.A.W. et al. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57: 603–619.
2 2. Thommes, M., Kaneiko, K., Neimark, A.V. et al. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87: 1051–1061.
3 3. Morris, S.M., Fulvio, P.F., and Jaroniec, M. (2008). Ordered mesoporous alumina‐supported metal oxides. Journal of the American Chemical Society 45: 15210–15216.
4 4. Zhao, R.‐H., Li, C.P., Guo, F., and Chen, J.‐F. (2007). Scale‐up preparation of organized mesoporous alumina in a rotating packed bed. Industrial & Engineering Chemistry Research 46: 3317–3320.
5 5. Lee, J., Yoon, S., Oh, S. et al. (2000). Development of a new mesoporous carbon using an HMS aluminosilicate template. Advanced Materials 12: 359–362.
6 6. Ryoo, R., Joo, S.H., and Jun, S. (1999). Synthesis of highly ordered carbon molecular sieves via template‐mediated structural transformation. The Journal of Physical Chemistry B 103: 7743–7746.
7 7. Liu, A.H. and Schüth, F. (2006). Nanocasting: a versatile strategy for creating nanostructured porous materials. Advanced Materials 18: 793–1805.
8 8. Jiang, T., Budarin, V.L., Shuttleworth, P. et al. (2015). Green preparation of tuneable carbon–silica composite materials from wastes. Journal of Materials Chemistry A 3: 14148–14156.
9 9. Budarin, V., Clark, J.H., Hardy, J.J.E. et al. (2006). Starbons: new starch‐derived mesoporous carbonaceous materials with tunable properties. Angewandte Chemie International Edition 45: 3782–3786.
10 10. White, R.J., Antonio, C.A., Budarin, V.L. et al. (2010a). Polysaccharide‐derived carbons for polar analyte separations. Advanced Functional Materials 20: 1834–1841.
11 11. White, R.J., Budarin, V.L., and Clark, J.H. (2010b). Pectin‐derived porous materials. Chemistry – A European Journal 16: 1326–1335.
12 12. Attard, J., Milescu, R., Budarin, V. et al. (2018). Unexpected nitrile formation in bio‐based mesoporous materials (Starbons®). Chemical Communications 54: 686–688.
13 13. International Association for the Properties of Water and Steam (IAPWS) (2014). Revised Release on Surface Tension of Ordinary Water Substance. http://www.iapws.org/relguide/Surf‐H2O‐2014.pdf (accessed 10 November 2021).
14 14. Lange, N.A. and Dean, J.A. (1967). Handbook of Chemistry, 10ee, 1661–1665. New York: McGraw Hill.
15 15. Vasquez, G., Alvares, E., and Navaza, J.M. (1995). Surface tension of alcohol water + water from 20 to 50 °C. Journal of Chemical and Engineering Data 40: 611–614.
16 16. Borisova, A., De Bruyn, M., Budarin, V.L. et al. (2015). A sustainable freeze‐drying route to porous polysaccharides with tailored hierarchical meso‐and macroporosity. Macromolecular Rapid Communications 36: 774–779.
17 17. Budarin, V.L., Luque, R., Clark, J.H., and Macquarrie, D.J. (2007a). Versatile mesoporous carbonaceous materials for acid catalysis. Chemical Communications 634–636. https://doi.org/10.1039/b614537j.
18 18. Budarin, V., Clark, J.H., Luque, R. et al. (2007b). Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chemistry 9: 992–995.
19 19. Clark, J.H., Budarin, V., Dugmore, T. et al. (2008). Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catalysis Communications 9 (8): 1709–1714.
20 20. Aldana‐Pérez, A., Lartundo‐Rojas, L., Gómez, R., and Niño‐Gómez, M.E. (2012). Sulfonic groups anchored on mesoporous carbon Starbons‐300 and its use for the esterification of oleic acid. Fuel 100: 128–138.
21 21. Budarin, V., Clark, J.H., Luque, R., and Macquarrie, D.J. (2007c). Towards a bio‐based industry: benign catalytic esterifications of succinic acid in the presence of water. Chemistry – A European Journal 13: 6914–6919.
22 22. Sreedhar, I., Aniruddha, R., and Malik, S. (2019). Carbon capture using amine modified porous carbons derived from starch (Starbons®). SN Applied Sciences 1: 463.
23 23. Matharu, A.S., Ahmed, S., Almonthery, B. et al. (2018). Starbon/high‐amylose corn starch‐supported N‐heterocyclic carbene–iron(III) catalyst for conversion of fructose into 5‐hydroxymethylfurfural. ChemSusChem 11: 716–725.
24 24. Carneiro, L., Silva, A.R., Shuttleworth, P.S. et al. (2014). Synthesis, immobilization and catalytic activity of a copper(II) complex with a chiral bis(oxazoline). Molecules 19: 11988–11998.
25 25. Zeikus, J.G., Jain, M.K., and Elankovan, P. (1999). Biotechnology of succinic acid production and markets for derived industrial products. Applied Microbiology and Biotechnology 51: 545–552.
26 26. Gómez Millán, G., Phiri, J., Mäkelä, M. et al. (2019). Furfural production in a biphasic system using a carbonaceous solid acid catalyst. Applied Catalysis A. General 585: 117180.
27 27. Luque, R., Budarin, V., Clark, J.H., and Macquarrie, D.J. (2009). Microwave‐assisted preparation of amides using a stable and reusable mesoporous carbonaceous solid acid. Green Chemistry 11: 459–461.
28 28. Mesquita, L.M.M., Pinto, R.M.A., Salvador, J.A.R. et al. (2015). Starbon® 400‐HSO3: a green mesoporous carbonaceous solid acid catalyst for the Ritter reaction. Catalysis Communications 69: 170–173.
29 29. Luque, R., Budarin, V., Clark, J.H. et al. (2011). Starbon® acids in alkylation and acetylation reactions: effect of the Brönsted‐Lewis acidity. Catalysis Communications 12: 1471–1476.
30 30. Doi, S., Clark, J.H., and Macquarrie, D.J. (2002). New materials based on renewable resources: chemically modified expanded corn starches as catalysts for liquid phase organic reactions. Chemical Communications 2: 2632–2633.
31 31. North, M., Pasquale, R., and Young, C. (2010). Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry 12: 1514–1539.
32 32. Colmenares, J.C., Lisowski, P., and Łomot, D. (2013). A novel biomass‐based support (Starbon) for TiO2 hybrid photocatalysts: a versatile green tool for water purification. RSC Advances 3: 20186.
33 33. Colmenares, J.C., Lisowski, P., Mašek, O. et al. (2018). Design and fabrication of TiO2/lignocellulosic carbon materials: relevance of low‐temperature sonocrystallization to photocatalysts performance. ChemCatChem 10: 3469–3480.
34 34. Milescu, R.A., Dennis, M.R., McElroy, C.R. et al. (2020). The role of surface functionality of sustainable mesoporous materials Starbon® on the adsorption of toxic ammonia and sulphur gasses. Sustainable Chemistry and Pharmacy 15: 100230.
35 35. Durá, G.,