Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности. Дэйв Голдберг
Чтение книги онлайн.
Читать онлайн книгу Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг страница 18
IV. Не квантовая ли механика виновата в том, что я постоянно все теряю?
Объяснив, в чем состоит основная идея квантовых странностей, мы посвятим несколько минут беседе о некоторых ее следствиях, которые на первый взгляд кажутся невероятными, – именно их вы скорее всего сочтете софистическими фокусами или чрезмерным упрощением.
Когда мы направляем луч электронов на экран с двумя щелями в ходе все того же опыта, то не знаем, в какую именно щель пролетит частица. Это все равно что сказать, что в положении электрона наблюдается неопределенность. В 1948 году Ричард Фейнман, который тогда работал в Корнельском университете, обнаружил в этом опыте еще более вопиющую странность.
Чтобы хорошенько представить себе, что именно сделал Фейнман, давайте снова поставим этот опыт. Хайд стреляет электронным лучом в экран с двумя щелями и смотрит, что получится. «А если бы мы прорезали в переднем экране третью щель?» – думает он. Будучи прирожденным убийцей, Хайд выхватывает кинжал и прорезает в экране еще одну щель. Теперь электрону придется проходить сквозь все три щели – в каждую с некоторой вероятностью, – и интерферировать друг с другом будут все три получившиеся в результате волны.
«А четвертую? А пятую?» И снова электрон будет проходить во все щели одновременно. «А если мы будем прорезать щели, пока экран не исчезнет?» Хайд принимается кромсать экран, словно он весь состоит из лондонских уличных мальчишек, пока пол лаборатории не оказывается усеян обрывками и ошметками. Электрон должен проходить сквозь все пространство, где раньше был экран, с некоторой вероятностью.
Что произойдет, если Хайд поставит между лучом и задним проекционным экраном много таких (пустых) экранов? Естественно, электрон пройдет сквозь все эти щели с вероятностью, заданной волновой функцией.
Но если никаких экранов нет, значит, Фейнман описывает ситуацию, в которой обычная частица просто проходит из точки А в точку В, а если вы еще не поняли, в чем тут соль (а понять это не так-то просто), на самом деле он убедительно показал, что, проходя из одной точки в другую, частицы двигаются вовсе не обязательно по прямой или даже по кривой или зигзагообразно, а проходят все возможные пути одновременно!
Хуже того – проходя по всем этим возможным путям, частицы вытворяют самые разные невозможные фокусы. Например, они обретают «неправильную» массу или двигаются быстрее скорости света. То, что в обычной жизни кажется невозможным, происходит просто с крайне маленькой вероятностью. Но тем не менее «невозможные» события нужно учитывать в расчетах, чтобы они были точными.
Мы отдаем себе отчет, что все это до боли