Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности. Дэйв Голдберг
Чтение книги онлайн.
Читать онлайн книгу Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг страница 26
Даже освободившись от тревог за кошмарное будущее планеты, Герман все равно найдет о чем тревожиться. Почему непонятные мелкие частички в его стакане с водой все кружатся и кружатся? Какова вероятность, что через двести лет в Землю врежется гигантский астероид? Долго ли проживет его ручной нейтрон? Возможно, раньше все это вас не заботило, но каждое из этих явлений – результат последовательности случайных событий в действии.
I. Если физический мир настолько непредсказуем, почему мы замечаем это далеко не всегда?
На отдаленной ветке генеалогического древа (и на пыльной дальней полке генофонда) находится дядя Луи. Он человек по-своему обаятельный – сыплет солеными шуточками и постоянно просит маленьких детишек дернуть его за палец. Племянники и племянницы дяди Луи заплатили за колледж монетками в четверть доллара, которые он натаскал из ушей. Однако дядя Луи – патологический азартный игрок. Дядя Луи готов заключать пари по поводу чего угодно – чем кончится фильм, кто победит в гонке раков-отшельников, ну и так далее. Поэтому дядя Луи и Дейв прячутся от тети Мейвис в туалете и играют там в старую добрую игру – бросают монетку. Ну что в этом плохого, скажите на милость, если только монетка не крапленая?
Чтобы понять суть игры, надо объяснить, что значит «некрапленая монетка». Если монетку кидали миллион раз, то решка будет выпадать примерно в половине раз. Чем дольше бросают монетку, тем ближе к 50 % будет частота решек. Кроме того, монетка «некрапленая», если каждый следующий бросок не зависит от предыдущего. Неважно, что выпало только что – орел или решка: в следующий раз с той же вероятностью в 50 % выпадет орел или решка.
Но вот в чем загвоздка. Хотя мы ожидаем, что после миллиона бросков дядя Луи и Дейв будут идти примерно ноздря в ноздрю, мы имеем в виду именно дроби.
Технический уголок дяди Дейва. Немного статистики
В начале книги мы пообещали вам следить, чтобы количество формул не превышало абсолютного минимума. Вот уже некоторое время мы придерживаемся правила «без формул», но при чтении такой математикоемкой главы, как эта, наверняка найдутся мазохисты, которые потребуют еще. «Откуда взялись эти числа?» – слышится ваш вопль. Поэтому вот вам еще капелька математики.
Когда дядя Луи бросает некрапленую монетку, существует, как мы упоминали, достаточно высокая вероятность, что решка будет выпадать примерно в половине раз. Насколько точно? Есть полезное правило: разброс результатов будет примерно равен квадратному корню из удвоенного ожидаемого количества решек (то есть «побед»). Для простоты мы немного сжульничали, но основную картину это не меняет. Так что если вы бросаете монетку миллион раз, то, скорее всего, получите решку полмиллиона