Genotyping by Sequencing for Crop Improvement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genotyping by Sequencing for Crop Improvement - Группа авторов страница 18

Genotyping by Sequencing for Crop Improvement - Группа авторов

Скачать книгу

in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32 (314): 331.

      10 Brar, D.S. and Dhaliwal, H.S. (1997). Molecular markers and their application in crop improvement. In: Proceedings 3rd Agricultural Science Congress (eds. M.S. Bajwa et al.). New Delhi, India: Natl. Acad. Agr. Sci.

      11 Brookes, A.J. (1999). The essence of SNPs. Gene 234: 177–186.

      12 Chao, W.Z., Tang, C.H., Zhang, J.S. et al. (2018). Development of a stable SCAR marker for rapid identification of Ganoderma lucidum Hunong 5 cultivar using DNA pooling method and inter‐simple sequence repeat markers. Journal of Integrative Agriculture 17 (1): 130–138.

      13 Chen, H., Xie, W., He, H. et al. (2013). A high density SNP genotyping array for rice biology and molecular breeding. Molecular Plant 7: 541–553.

      14 Ching, A., Caldwell, K.S., Jung, M.T., and Dolan, M. (2002). SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics 3 (1): 19. https://doi.org/10.1186/1471‐2156‐3‐19.

      15 Cho, Y.G., McCouch, S.R., Kuiper, M. et al. (1997). Integration of AFLP markers into an RFLP and SSLP map of rice (Oryza sativa L.). Rice Genet. Newsletter 14: 106–109.

      16 Chung, Y.S., Choi, S.C., Jun, T.‐H., and Kim, C. (2017). Genotyping by sequencing: a promising tool for plant genetics research and breeding. Horticulture, Environment and Biotechnology 58 (5): 425–431.

      17 Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B., and Pang, E.C.K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker‐assisted selection for crop improvement: the basic concepts. Euphytica 142: 169–196.

      18 Coryell, V.H., Jessen, H., Schupp, J.M. et al. (1999). Allele‐specific hybridization markers for soybean. Theoretical and Applied Genetics 98: 690–696.

      19 Ding, C. and Jin, S. (2009, 2003). High‐throughput methods for SNP genotyping. In: Single Nucleotide Polymorphisms, Methods in Molecular Biology, vol. 578 (ed. A.A. Komar). Humana Press, A Part of Springer Science+Business Media, LLC https://doi.org/10.1007/978‐1‐60327‐411‐1_16.

      20 Elkot, A.F.A., Chhuneja, P., Kaur, S. et al. (2015). Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.). PLoS One 10 (6): e128297.

      21 Fang, T., Lei, L., Li, G. et al. (2020). Development and deployment of KASP markers for multiple alleles of Lr34 in wheat. Theoretical and Applied Genetics 133: 2183–2195.

      22 Fehr, W. (1984). Genetic Contributions to Yield Gains of Five Major Crop Plants. Madison, Wisconsin: Special publication No. 7 Crop Science Society of America.

      23 Fulton, T.M., Nelson, J.C., and Tanksley, S.D. (1997). Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of cultivated tomato into L. esculentum followed through three successive backcross generations. Theoretical and Applied Genetics 95: 895–902.

      24 Ganal, M.W., Altmann, T., and Roder, M.S. (2009). SNP identification in crop plants. Current Opinion in Plant Biology 12 (2): 211–217.

      25 Ganal, M.W., Durstewitz, G., Polley, A. et al. (2011). A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6.

      26 Gibbs, R.A. et al. (2009). Genome‐wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324: 528–532.

      27 Grewal, S., Othmeni, M., Walker, J. et al. (2020). Development of Wheat‐Aegilops caudata introgression lines and their characterization using genome‐specific KASP markers. Frontiers in Plant Science 11: 606.

      28 Grodzicker, T., Williams, J., Sharp, P., and Sambrook, J. (1975). Physical mapping of temperature sensitive mutants of adenovirus. Cold Spring Harbor Symposia on Quantitative Biology 39: 439–446.

      29 Gupta, P.K. and Rustgi, S. (2004). Molecular markers from the transcribed/expressed region of the genome in higher plants. Functional & Integrative Genomics 4: 139–162.

      30 Haanstra, J.P.W., Wye, C., Odinot, P. et al. (1999). An integrated high density RFLP‐AFLP map of tomato based on two Lycopersicon esculentum x L. pennellii F2 populations. Theoretical and Applied Genetics 99: 254–271.

      31 Harushima, Y., Yano, M., Shomura, A. et al. (1998). A high density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148: 479–494.

      32 Helentjaris, T., Slocum, M., Wright, S. et al. (1986). Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theoretical and Applied Genetics 61: 650–658.

      33 Huang, N., Angeles, E.R., Domingo, J. et al. (1997). Pyramiding bacterial blight resistance gene in rice: marker assisted selection using RFLP and PCR. Theoretical and Applied Genetics 95: 313–320.

      34 Hunt, G.J. (1997). Construction of linkage maps with RAPD markers. In: Fingerprinting Methods Based on Arbitrarily Primed PCR (eds. M.R. Micheli and R. Bova). Berlin, Heidelberg: Springer Lab Manuals. Springer https://doi.org/10.1007/978‐3‐642‐60441‐6_22.

      35 Hussain, W., Baenziger, P.S., Belamkar, V. et al. (2017). Genotyping‐by‐Sequencing derived high‐density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Scientific Reports 7: 16394.

      36 IRGSP (2005). The map‐based sequence of the rice genome. Nature 436: 793–800. (Suppl. Table 18).

      37 Jaccoud, D., Peng, K., Feinstein, D., and Kilian, A. (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29: e25.

      38 Jamali, S.H., Cockram, J., and Hickey, L.T. (2019). Insights into deployment of DNA markers in plant variety protection and registration. Theoretical and Applied Genetics 132: 1911–1929.

      39 Jena, K.K., Khush, G.S., and Kochert, G. (1992). RFLP analysis of rice introgression lines. Theoretical and Applied Genetics 84: 608–616.

      40 Joshi, S.P., Ranjekar, P.K., and Gupta, V.S. (1999). Molecular markers in plant genome analysis. Current Science 77: 230–240.

      41 Kagale, S., Koh, C., Clarke, W.E. et al. (2016). Analysis of genotyping by sequencing data. Methods in Molecular Biology 1374: 269–284.

      42 Kang, J.‐W., Shin, D., Cho, J.H. et al. (2019). Accelerated development of rice stripe virus‐resistant, near‐isogenic rice lines through marker‐assisted backcrossing. PLoS One 14 (12): e0225974.

      43 Kasai, K., Morikawa, Y., Sorri, V.A. et al. (2000). Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome 43: 1–8.

      44 Kumar, A., Dixit, S., and Henry, A. (2013). Marker‐assisted introgression of major QTLs for grain yield under drought in rice. In: Translational Genomics for Crop Breeding Volume 2: Abiotic Stresses, Yield and Quality (eds. R.K. Varshney and R. Tuberosa). Wiley.

      45 Kumar, K., Sarao, P.S., Bhatia, D. et al. (2018). High‐resolution genetic mapping of novel brown planthopper resistance locus, Bph34 in Oryza sativa X Oryza nivara (Sharma & Shastry) derived interspecific F2 population. Theoretical

Скачать книгу