Thermal Food Engineering Operations. NITIN KUMAR

Чтение книги онлайн.

Читать онлайн книгу Thermal Food Engineering Operations - NITIN KUMAR страница 30

Thermal Food Engineering Operations - NITIN KUMAR

Скачать книгу

in food products while maintaining the balance between nutrition content, safety, and quality attributes of the product, also improving the shelf life of the food with minimum still limiting the high investment in the processing line. Besides, these technologies confirm the decontamination technique at the higher end. All the technologies mentioned have their potential stand in the food industries; they perform robustly, replacing the traditional heating process by applying different hurdle technology. Some other techniques utilized in the food industrial sectors are cold plasma, pulse light, and ultrasound technology, which are also extensively studied for the inactivation of several microorganisms like Salmonella typhimurium, Bacillus cereus and, E. coli plus the yeast. Additionally, a promising outcome was seen: integrating the hurdle effects of these innovative methods with different parameters proves to be beneficial for a variety of food products and also for powder products. However, studies are still going on and some notable changes need to be done on the food sector to scale up the process more quantitatively. The spore should not repair itself during the storage of the food product, plus the main highlight which is expected is the system to be environmentally friendly which will automatically help in the success of the industrial plant.

      1. J. P. P. M. Smelt and S. Brul, “Thermal Inactivation of Microorganisms,” Crit. Rev. Food Sci. Nutr., vol. 54, no. 10, pp. 1371–1385, 2014, doi: 10.1080/10408398.2011.637645.

      2. E. Ağçam, A. Akyildiz, and B. Dündar, “Thermal Pasteurization and Microbial Inactivation of Fruit Juices,” in Fruit Juices: Extraction, Composition, Quality and Analysis, 2018.

      3. J. Van Impe et al., “State of the art of nonthermal and thermal processing for inactivation of micro-organisms,” J. Appl. Microbiol., vol. 125, no. 1, pp. 16–35, 2018, doi: 10.1111/jam.13751.

      4. C. Jiménez-Sánchez, J. Lozano-Sánchez, A. Segura-Carretero, and A. Fernández-Gutiérrez, “Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 3, pp. 501–523, 2017, doi: 10.1080/10408398.2013.867828.

      5. X. Li and M. Farid, “A review on recent development in non-conventional food sterilization technologies,” Journal of Food Engineering, vol. 182. 2016, doi: 10.1016/j.jfoodeng.2016.02.026.

      6. P. Mañas and R. Pagán, “Microbial inactivation by new technologies of food preservation,” J. Appl. Microbiol., vol. 98, no. 6, pp. 1387–1399, 2005, doi: 10.1111/j.1365-2672.2005.02561.x.

      7. S. Roohinejad, M. Koubaa, A. S. Sant’Ana, and R. Greiner, “Mechanisms of microbial inactivation by emerging technologies,” in Innovative technologies for food preservation: Inactivation of spoilage and pathogenic microorganisms, 2018.

      8. C. N. Horita, R. C. Baptista, M. Y. R. Caturla, J. M. Lorenzo, F. J. Barba, and A. S. Sant’Ana, “Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products,” Trends in Food Science and Technology, vol. 72. 2018, doi: 10.1016/j.tifs.2017.12.003.

      9. J. B. Portela et al., “Predictive model for inactivation of salmonella in infant formula during microwave heating processing,” Food Control, vol. 104, 2019, doi: 10.1016/j.foodcont.2019.05.006.

      11. B. H. Lado and A. E. Yousef, “Alternative food-preservation technologies: Efficacy and mechanisms,” Microbes and Infection, vol. 4, no. 4. 2002, doi: 10.1016/S1286-4579(02)01557-5.

      12. S. Gaillard, I. Leguerinel, and P. Mafart, “Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores,” J. Food Sci., vol. 63, no. 5, 1998, doi: 10.1111/j.1365-2621.1998. tb17920.x.

      13. E. L. Dufort, M. R. Etzel, and B. H. Ingham, “Thermal processing parameters to ensure a 5-log Reduction of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in Acidified Tomato-based Foods,” Food Prot. Trends, vol. 37, no. 6, pp. 409–418, 2017.

      14. F. J. Barba, M. Koubaa, L. do Prado-Silva, V. Orlien, and A. de S. Sant’Ana, “Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review,” Trends in Food Science and Technology, vol. 66. 2017, doi: 10.1016/j.tifs.2017.05.011.

      15. R. N. Pereira and A. A. Vicente, “Environmental impact of novel thermal and non-thermal technologies in food processing,” Food Res. Int., vol. 43, no. 7, 2010, doi: 10.1016/j.foodres.2009.09.013.

      16. J. P. Huertas et al., “High heating rates affect greatly the inactivation rate of Escherichia coli,” Front. Microbiol., vol. 7, no. AUG, 2016, doi: 10.3389/ fmicb.2016.01256.

      17. W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow, “Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments,” Microbiol. Mol. Biol. Rev., vol. 64, no. 3, 2000, doi: 10.1128/ mmbr.64.3.548-572.2000.

      18. L. da Cruz Cabral, V. Fernández Pinto, and A. Patriarca, “Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods,” International Journal of Food Microbiology, vol. 166, no. 1. 2013, doi: 10.1016/j.ijfoodmicro.2013.05.026.

      19. M. C. Pina-Pérez, A. Rivas, A. Martínez, and D. Rodrigo, “Effect of thermal treatment, microwave, and pulsed electric field processing on the antimicrobial potential of açaí (Euterpe oleracea), stevia (Stevia rebaudiana Bertoni), and ginseng (Panax quinquefolius L.) extracts,” Food Control, vol. 90, 2018, doi: 10.1016/j.foodcont.2018.02.022.

      20. A. Rodriguez-Palacios and J. T. LeJeune, “Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile,” Appl. Environ. Microbiol., vol. 77, no. 9, 2011, doi: 10.1128/AEM.01589-10.

      21. Evelyn and F. V. M. Silva, “Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication,” J. Food Eng., vol. 201, 2017, doi: 10.1016/j. jfoodeng.2017.01.007.

      23. A. Métris, S. M. George, B. M. Mackey, and J. Baranyi, “Modeling the variability of single-cell lag times for Listeria innocua populations after sublethal and lethal heat treatments,” Appl. Environ. Microbiol., vol. 74, no. 22, 2008, doi: 10.1128/AEM.01237-08.

      24. W. Zhao, R. Yang, X. Shen, S. Zhang, and X. Chen, “Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields,” Food Control, vol. 32, no. 1, 2013, doi: 10.1016/j.foodcont.2012.11.029.

      25. S. K. Wimalaratne and M. M. Farid, “Pressure assisted thermal sterilization,” Food Bioprod. Process., vol. 86, no. 4, 2008, doi: 10.1016/j.fbp.2007.08.001.

      26. P. Loypimai, A. Moongngarm, P. Chottanom, and T. Moontree, “Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant,” Innov. Food

Скачать книгу