Systems Biogeochemistry of Major Marine Biomes. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Systems Biogeochemistry of Major Marine Biomes - Группа авторов страница 43
38 Fick, A. (1855). On liquid diffusion. Philosophical Magazine 10 (63): 30–39. https://doi.org/10.1080/14786445508641925
39 Filman, D.J., Marino, S.F., Ward, J.E. et al. (2018). Structure of a cytochrome‐based bacterial nanowire. bioRxiv. http://dx.doi.org/10.1101/492645
40 Finneran, K.T., Johnsen, C.V. and Lovley, D.R. (2003). Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). International Journal of Systematic and Evolutionary Microbiology 53 (3): 669–673. https://doi.org/10.1099/ijs.0.02298–0
41 Froelich, P., Klinkhammer, G., Bender, M. et al. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta 43 (7): 1075–1090. https://doi.org/10.1016/0016–7037(79)90095–4
42 Gao, H., Obraztova, A., Stewart, N. et al. (2006). Shewanella loihica sp. nov., isolated from iron‐rich microbial mats in the Pacific Ocean.International Journal of Systematic and Evolutionary Microbiology 56(8): 1911–1916. https://doi.org/10.1099/ijs.0.64354–0
43 Gorby, Y.A., Yanina, S., McLean, J.S. et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR‐1 and other microorganisms. Proceedings of the National Academy of Sciences 103 (30): 11358–11363. https://doi.org/10.1073/pnas.0604517103
44 Hamman, R. and Ottow, J.C.G. (1974). Reductive dissolution of Fe2O2 by saccharolytic Clostrida and Bacillus polymyxa under anaerobic conditions. Zeitschrift für Pflanzenernährung und Bodenkunde 137 (2): 108–115. https://doi.org/10.1002/jpln.19741370205
45 Holmes, D.E., Bond, D.R. and Lovley, D.R. (2004a). Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Applied and Environmental Microbiology 70 (2): 1234–1237. doi:10.1128/AEM.70.2.1234–1237.2004
46 Holmes, D.E., Nicoll, J.S., Bond, D.R. et al. (2004b). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp., in electricity production by a marine sediment fuel cell. Applied and Environmental MicrobiologyEnvironmental Microbiology 70 (10): 6023–6030. doi:10.1128/AEM.70.10.6023–6030.2004
47 Holmes,D.E., Dang, Y., Walker, D.J.F., Lovley, D.R. (2016). The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microbial Genomics 2(8): e000072. doi: 10.1099/mgen.0.000072
48 Holmkvist, L., Ferdelman, T.G. and Jørgensen, B.B. (2011). A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta 75 (12): 3581–3599. https://doi.org/10.1016/j.gca.2011.03.033
49 Huang, J., Sun, B. and Zhang, X. (2010). Shewanella xiamenensis sp. nov., isolated from coastal sea sediments. International Journal of Systematic and Evolutionary Microbiology 60 (7): 1585–1589. https://doi.org/10.1099/ijs.0.013300–0
50 Huber, H., Thomm, M., Konig, H. et al. (1982). Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Archives of Microbiology 132 (1): 47–50. https://doi.org/10.1007/BF00690816
51 Ivanova, E.P., Sawabe, T., Gorschkova, N.M. et al. (2001). Shewanella japonica sp. nov. International Journal of Systematic and Evolutionary Microbiology 51 (3): 1027–1033. https://doi.org/10.1099/00207713–51–3–1027
52 Jensen, M.M., Thamdrup, B., Rysgaard, S. et al. (2003). Rates and regulation of microbial iron reduction in sediments of the Baltic‐North transition. Biogeochemistry 65 (3): 295–317. https://doi.org/10.1023/A:1026261303494
53 Jeong, Y.S., Song, S.K., Lee, S.J. et al. (2006). The growth and EPA synthesis of Shewanella oneidensis MR‐1 and expectation of EPA biosynthetic pathway. Biotechnology and Bioprocess Engineering 11 (2): 127–133. https://doi.org/10.1007/BF02931896
54 Kashefi, K., Tor, J.M., Holmes, D.E. et al. (2002). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. International Journal of Systematic and Evolutionary Microbiology 52 (3): 719–729. https://doi.org/10.1099/00207713–52–3‐719
55 Kashefi, K., Holmes, D.E., Baross, J.A. et al. (2003). Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from “Bag City” hydrothermal vent. Applied and Environmental Microbiology 69 (5): 2985–2993. doi: 10.1128/AEM.69.5.2985–2993.2003
56 Kim, B.H., Kim, H.J., Hyun, M.S. et al. (1999). Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology 9: 127–31.
57 Kim, H.J., Park, H.S., Hyun, M.S. et al. (2002). A mediator‐less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology 30 (2): 145–152. https://doi.org/10.1016/S0141–0229(01)00478–1
58 Kim, S.J., Park, S.J., Oh, Y.S. et al. (2012). Shewanella arctica sp. nov., an iron‐reducing bacterium isolated from Arctic marine sediment. International Journal of Systematic and Evolutionary Microbiology 62 (5): 1128–33.https://doi.org/10.1099/ijs.0.031401–0
59 Kjeldsen, K.U., Schreiber, L., Thorup, C.A. et al. (2019). On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences 116 (38): 19116–19125. https://doi.org/10.1073/pnas.1903514116
60 Knoblauch, C., Sahm, K. and Jørgensen, B.B. (1999). Pschycrophilic sulfate‐reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulofrigus oceanense gen. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. International Journal of Systematic and Evolutionary Microbiology 49 (4): 1631–1643. doi:10.1099/00207713–49–4‐1631
61 König, I., Haeckel, M., Drodt, M. et al. (1999). Reactive Fe(II) layers in deep‐sea sediments. Geochimica et Cosmochimica Acta 63 (10): 1517–1526. https://doi.org/10.1016/S0016–7037(99)00104–0
62 Kraemer, S. (2004). The iron oxide dissolution and solubility in the presence of siderophores. Aquatic Science 66 (1): 3–18.