Handbook of Aggregation-Induced Emission, Volume 1. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Handbook of Aggregation-Induced Emission, Volume 1 - Группа авторов страница 37

Handbook of Aggregation-Induced Emission, Volume 1 - Группа авторов

Скачать книгу

formalism for triplet excited state decay: combined spin–orbit and nonadiabatic couplings. J. Chem. Theory Comput. 9 (2), 1132–1143.

      12 12 Niu, Y.; Peng, Q.; Deng, C.; Gao, X.; Shuai, Z. (2010). Theory of excited state decays and optical spectra: application to polyatomic molecules. J. Phys. Chem. A 114 (30), 7817–7831.

      13 13 Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. (2007). Toward quantitative prediction of molecular fluorescence quantum efficiency: role of Duschinsky rotation. J. Am. Chem. Soc. 129 (30), 9333–9339.

      14 14 Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. (2007). Excited state radiationless decay process with Duschinsky rotation effect: formalism and implementation. J. Chem. Phys. 126 (11), 114302.

      15 15 Li, Q.; Blancafort, L. (2013). A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chem. Commun. 49 (53), 5966–5968.

      16 16 Crespo‐Otero, R.; Li, Q.; Blancafort, L. (2019). Exploring potential energy surfaces for aggregation‐induced emission—from solution to crystal. Chem. Asian J. 14 (6), 700–714.

      17 17 Liu, Y.; Tao, X.; Wang, F.; Shi, J.; Sun, J.; Yu, W.; Ren, Y.; Zou, D.; Jiang, M. (2007). Intermolecular hydrogen bonds induce highly emissive excimers: enhancement of solid‐state luminescence. J. Phys. Chem. C 111 (17), 6544–6549.

      18 18 Huang, W.; Sun, L.; Zheng, Z.; Su, J.; Tian, H. (2015). Colour‐tunable fluorescence of single molecules based on the vibration induced emission of phenazine. Chem. Commun. 51 (21), 4462–4464.

      19 19 Chung, J. W.; Yoon, S.‐J.; An, B.‐K.; Park, S. Y. (2013). High‐contrast on/off fluorescence switching via reversible E–Z isomerization of diphenylstilbene containing the α‐cyanostilbenic moiety. J. Phys. Chem. C 117 (21), 11285–11291.

      20 20 Yang, L.; Ye, P.; Li, W.; Zhang, W.; Guan, Q.; Ye, C.; Dong, T.; Wu, X.; Zhao, W.; Gu, X.; Peng, Q.; Tang, B.; Huang, H. (2018). Uncommon aggregation‐induced emission molecular materials with highly planar conformations. Adv. Optical Mater. 6 (9), 1701394.

      21 21 Tu, Y.; Liu, J.; Zhang, H.; Peng, Q.; Lam, J. W. Y.; Tang, B. Z. (2019). Restriction of access to the dark state: a new mechanistic model for heteroatom‐containing AIE systems. Angew. Chem. Int. Ed. 58 (42), 14911–14914.

      22 22 Yang, S.; Yin, P.‐A.; Li, L.; Peng, Q.; Gu, X.; Gao, G.; You, J.; Tang, B. Z. (2020). Crystallization‐induced reversal from dark to bright excited states for construction of solid‐emission‐tunable squaraines. Angew. Chem. Int. Ed. 59(25), 10136–10142. doi: 10.1002/anie.201914437.

      23 23 Lin, S. H.; Chang, C. H.; Liang, K. K.; Chang, R.; Shiu, Y. J.; Zhang, J. M.; Yang, T. S.; Hayashi, M.; Hsu, F. C. (2002) Ultrafast dynamics and spectroscopy of bacterial photosynthetic reaction centers. Adv. Chem. Phys. 121, 1–88.

      24 24 Niu, Y.; Peng, Q.; Shuai, Z. (2008). Promoting‐mode free formalism for excited state radiationless decay process with Duschinsky rotation effect. Sci. China Ser. B Chem., 51 (12), 1153–1158.

      25 25 Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. (2007). Excited state radiationless decay process with Duschinsky rotation effect: formalism and implementation. J. Chem. Phys. 126 (11), 114302.

      26 26 Niu, Y.; Li, W.; Peng, Q.; Geng, H.; Yi, Y.; Wang, L.; Nan, G.; Wang, D.; Shuai, Z. (2018). MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials. Mol. Phys. 116 (7–8), 1078–1090.

      27 27 Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25 (9), 1157–1174.

      28 28 Aaqvist, J.; Warshel, A. (1993). Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem. Rev. 93 (7), 2523–2544.

      29 29 Lin, H.; Truhlar, D. (2007). QM/MM: what have we learned, where are we, and where do we go from here? Theor. Chem. Acc. 117 (2), 185–199.

      30 30 Bussi, G.; Donadio, D.; Parrinello, M. (2007). Canonical sampling through velocity rescaling. J. Chem. Phys. 126 (1), 014101.

      31 31 Parrinello, M.; Rahman, A. (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys., 52 (12), 7182–7190.

      32 32 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. (2009). Gaussian, Inc.: Wallingford, CT.

      33 33 Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. (1989). Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162 (3), 165–169.

      34 34 Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. (2010). NWChem: a comprehensive and scalable open‐source solution for large scale molecular simulations. Comput. Phys. Commun. 181 (9), 1477–1489.

      35 35 Metz, S.; Kästner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P. (2014). ChemShell—a modular software package for QM/MM simulations. WIRES Comput. Mol. Sci. 4 (2), 101–110.

      36 36 Shuai, Z.; Peng, Q.; Niu, Y.; Geng, H. (2014). MOMAP, a free and open‐source molecular materials property prediction package. Revision 0.2.004; available online: http://www.shuaigroup.net/, Beijing,China.

      37 37 Zhang, T.; Jiang, Y.; Niu, Y.; Wang, D.; Peng, Q.; Shuai, Z. (2014). Aggregation effects on the optical emission of 1,1,2,3,4,5‐hexaphenylsilole (HPS): a QM/MM study. J. Phys. Chem. A 118 (39), 9094–9104.

      38 38 Xie, Y.; Zhang, T.; Li, Z.; Peng, Q.; Yi, Y.; Shuai, Z. (2015). Influences of conjugation extent on the aggregation‐induced emission quantum efficiency in silole derivatives: a computational study. Chem. Asian J. 10 (10), 2154–2161.

      39 39 Wu, Q.; Deng, C.; Peng, Q.; Niu, Y.; Shuai, Z. (2012). Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for pyrazine derivatives. J. Comput. Chem. 33 (23), 1862–1869.

      40 40 Wu, Q.; Peng, Q.; Niu, Y.; Gao, X.; Shuai, Z. (2012). Theoretical insights into the aggregation‐induced emission by hydrogen bonding: a QM/MM study. J. Phys. Chem. A 116 (15), 3881–3888.

      41 41 Ma, H.; Shi, W.; Ren, J.; Li, W.; Peng, Q.; Shuai, Z. (2016). Electrostatic interaction‐induced room‐temperature phosphorescence in pure organic molecules from QM/MM calculations. J. Phys. Chem. Lett. 7 (15), 2893–2898.

      42 42 Lin, S.; Peng, Q.; Ou, Q.; Shuai, Z. (2019). Strong solid‐state fluorescence induced by restriction of the coordinate bond bending in two‐coordinate copper(I)–carbene complexes. Inorg. Chem. 58 (21), 14403–14409.

      43 43 Zhao, Z.; Zheng, X.;

Скачать книгу