Predicting Heart Failure. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Predicting Heart Failure - Группа авторов страница 24

Predicting Heart Failure - Группа авторов

Скачать книгу

of 49 images and resulted in 93% accuracy. Other researchers (see Biswas, Saba, et al. [25]) have worked on a screening tool that integrates a two-stage AI model for IMT and carotid plaque measurements, and consists of a convolutional neural network (CNN) and a fully convolutional network (FCN). The system goes through two deep learning models. The first divides the common carotid artery from the ultrasound images into two categories: the rectangular wall and non-wall patches. Then, the region of interest is analyzed and fed to the second stage, which identifies features in order to calculate the carotid IMT and the plaque total.

      2.5.2 AI in Electrocardiography

      Electrocardiography has a high impact in detecting abnormalities in heart rhythm. Most of the existing machine learning applications based on ECG focus on classification of electrical signals to spot abnormal activity in the heart. With today’s availability of ECG in small portable devices such as smartwatches, AI integration helps patients to monitor their heartbeat levels and detect any abnormalities that might require seeing a doctor or having further tests.

      2.5.3 AI in CT

      CT scans are mainly used to view parts of the body in detail. In the case of a cardiac CT scan, it displays the heart and the blood vessels clearly which helps experts to diagnose or detect any abnormality. CT scans can detect the early signs of heart disease by scanning the heart’s arteries for any calcified plaque formation to create a coronary artery calcium (CAC) score, which has been proven to be a strong predictor for CVDs (Figure 2.9).

      The data captured by a CT scan generates a 3D model of a patient’s heart. Cardiac segmentation in chest CT images facilitates partitioning the entire chest CT image into numbers of anatomically significant regions that focus on the four chambers of the heart. The manual process of segmentation is becoming replaced by computer-aided techniques such as graph-based segmenting, mean-thresholding, fuzzy clustering methods, and the latest deep learning approach, which has shown promising results. The deep learning system can be trained to identify and quantify coronary artery calcium. This makes an effective early detection device for coronary calcification from atherosclerosis as it detects calcification before symptoms develop. This forms a powerful predictor of future heart problems.

      2.6 Conclusion

      Heart diseases are very common nowadays and are one of the major contributors of world mortality rate. The prompt diagnosis of heart disease can reduce the casualty as well as mortality associated with the risk of heart disease to a great extent. Today, due to the technological advancement in signal processing, medical imaging, sensors, etc., diagnosis

Скачать книгу