Drug Transporters. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Drug Transporters - Группа авторов страница 58

Drug Transporters - Группа авторов

Скачать книгу

substrates for the binding sites of renal OATs leading to an increase in plasma concentration of methotrexate and the manifestation of severe toxicity in the form of bone marrow suppression and damage to intestinal epithelium [4, 23]. Interestingly, it was found that individuals genetically predisposed to hyperuricemia had an increased risk of developing gout when taking diuretics compared with individuals without the predisposition [143]. Since the drugs and the metabolite associated with hyperuricemia, urate, are primarily handled by the OATs, it is possible that this increased risk is due to drug–metabolite interaction/competition at the level of the transporters. It is also worth noting that diet‐derived compounds, like the aforementioned natural products, may also compete with drugs and metabolites.

      In addition to the DDI or DMI induced by the direct interaction of OAT substrates and inhibitors on the transporter itself, certain drugs, phytomedicines or xenobiotics, can alter OAT‐mediated disposition of clinically relevant substances through an indirect manner by modulating OAT expression and function. Many OAT substrates, including indoxyl sulfate and other indole‐based compounds, have been shown to activate the aryl hydrocarbon receptor (AHR), which may play a role in the expression of OATs [144, 145]. Recent studies showed that anticancer drugs ixazomib, oprozomib, delanzomib, bortezomib, and carfilzomib enhanced OAT expression and OAT‐mediated drug transport by inhibiting proteasomal activity, thereby preventing OAT degradation in this organelle [146].

      4.5.1 Physiological Role

      4.5.2 Metabolic Pathways Regulated by OATs

      As described above, metabolomics analyses of the plasma and urine of Oat knockout animals have been performed. These studies provide important information on the various endogenous metabolites potentially handled in vivo by the renal Oats and begin to link the Oats to important metabolic pathways, including carbohydrate, fatty acid, and amino acid metabolism [120, 124, 125]. Focusing on Oat1, the potential role of this transporter in metabolic and signaling pathways was investigated using computational approaches to contextualize in vivo metabolomics, as well as transcriptomic data from wild‐type and Oat1 knockout animals [37]. Recon 1, a genome‐scale reconstruction of human metabolism [147], was used to integrate these high‐throughput Oat1‐specific data sets. Multiple metabolic pathways were linked to Oat1 function. Among these were the citric acid cycle, pentose phosphate, cholate, polyamine, and fatty acid metabolism. In vitro and ex vivo analysis demonstrated interactions between Oat1 and some key intermediates in these metabolic pathways, including polyamines (e.g., spermine and spermidine). These metabolic reconstructions were later constrained with Oat1 knockout serum metabolomics data and supported with pharmacophore models, as well as in vitro transport assays. These improved studies revealed a role for Oat1 in fatty acid metabolism, as well as folate biosynthesis [148]. Similar analyses have also been conducted with Oat3, which linked the transporter to Phase I and Phase II drug metabolism, as well as flavonoids and antioxidants [142].

      Early studies with knockout mice were limited by the identification of a small number of metabolites. In recent years, global metabolic profiling covering a wide range of biochemical pathways, including but not limited to amino acid metabolism, lipid metabolism, and carbohydrate metabolism, has further revealed the role of Oats in general physiology. Tryptophan metabolism is regulated by both Oat1 and Oat3, and metabolic task analysis revealed that loss of Oat1 leads to increased biosynthetic pathways for tryptophan intermediates. Humans treated with probenecid, a prototypical OAT inhibitor, also had multiple tryptophan derivatives elevated in their serum shortly after treatment, suggesting that drug–metabolite interactions predicted by knockout mice can occur in humans [123].

      In addition to tryptophan metabolism, Oat1 has also been shown to mediate circulating levels of several lipid pathways, including elevated polyunsaturated fatty acids and diacylglycerols and decreased bile acids and ceramides [129]. These results were supported by a metabolic reconstruction using Recon3D, the latest genome‐scale metabolic reconstruction that has a greater representation of reactions related to lipid molecules [149]. The knockout mice metabolomics were also supported with metabolomics from probenecid‐treated animals, which demonstrated that drug–metabolite interactions can impact circulating levels of prostaglandins and fatty acids. Traditionally, Oat1 is not associated with lipid‐like molecules, yet in vitro studies by other groups have shown that OAT1 interacts with dicarboxylates, suggesting that this understudied aspect may be a pivotal function of OATs [150].

      Serum metabolomics of the Oat3 knockout mice have revealed that Oat3 is a key contributor to the gut–liver–kidney axis through the regulation of important signaling molecules, such as bile acids [151]. The gut–liver–kidney axis is mainly understood as an avenue for drug clearance, where the intestine aids in the absorption, the liver contributes to detoxification, and the kidney is mainly for excretion. Analyzing this multi‐organ process from an endogenous perspective reveals that several compounds, like bile acids and tryptophan derivatives, can also be modified by enzymatic processes in the liver for improved entry into the kidney. Once in the kidney, these metabolites can exert their signaling effects. The data support the idea that the OATs, known to be expressed in many tissues and primarily known for drug and toxin clearance, are integral to a number of endogenous metabolic pathways [37].

      4.5.3 Chronic Kidney Disease and Uremic Toxins

      Interestingly, CKD not only leads to a progressive loss in the ability of the kidney to handle and eliminate drugs and metabolites, but it also alters the disposition of drugs and metabolites handled by non‐renal tissues, particularly the liver [157]. Indeed, renal and non‐renal Oat expression and function in CKD animal models has been shown to be altered [76]. Impairment of liver function, such as that caused by cholestasis, also alters drug handling and the expression of transporters in the kidney [158]. In support of this notion, studies using Oat knockout animals suggest a possible role for these transporters in blood pressure regulation, diabetic ketoacidosis, and hepatic steatosis [4, 48, 51, 129].

      4.5.4

Скачать книгу