Die Geschichte des Computers. Axel Bruns
Чтение книги онлайн.
Читать онлайн книгу Die Geschichte des Computers - Axel Bruns страница 9
Beispiel: | C | R1 | R2 | Addiere Inhalt von R1 auf den Inhalt von R2; C=Befehlscode, Rn=Register(n) Bei einstufigen Adressierungsarten kann die effektive Adresse durch eine einzige Adressberechnung ermittelt werden. Es muss also im Laufe der Adressberechnung nicht erneut auf den Speicher zugegriffen werden. Bei unmittelbarer Adressierung enthält der Befehl keine Adresse, sondern den Operanden selbst; meist nur für kurze Operanden wie '0', '1', 'AB' etc. anwendbar. Bei direkter Adressierung enthält der Befehl die logische Adresse selbst, es muss also keine Adressberechnung mehr ausgeführt werden. Bei Register-indirekter Adressierung ist die logische Adresse bereits in einem Adressregister des Prozessors enthalten. Die Nummer dieses Adressregisters wird im Maschinenbefehl übergeben. Bei der indizierten Adressierung erfolgt die Adressberechnung mittels Addition: Der Inhalt eines Registers wird zu einer zusätzlich im Befehl übergebenen Adressangabe hinzugerechnet. Eine der beiden Adressangaben enthält dabei i. d. R. eine Basisadresse, während die andere ein 'Offset' zu dieser Adresse enthält. Siehe auch Registertypen.
Beispiel: | C | R1 | R2 | O | Lade Inhalt von R2 + Inhalt (Offset) ins R1; O=Offset Bei Programmzähler-relativer Adressierung wird die neue Adresse aus dem aktuellen Wert des Programmzählers und einem Offset ermittelt.Bei zweistufigen Adressierungsarten sind mehrere Rechenschritte notwendig, um die effektive Adresse zu erhalten. Insbesondere ist im Laufe der Berechnung meist ein zusätzlicher Speicherzugriff notwendig. Als Beispiel sei hier die indirekte absolute Adressierung genannt. Dabei enthält der Befehl eine absolute Speicheradresse. Das Speicherwort, das unter dieser Adresse zu finden ist, enthält die gesuchte effektive Adresse. Es muss also zunächst mittels die gegebene Speicheradresse im Speicher zurückgegriffen werden, um die effektive Adresse für die Befehlsausführung zu ermitteln. Das kennzeichnet alle zweistufigen Verfahren.
Beispiel: | C | R1 | R2 | AA | Lade nach R1 = Inhalt R2 + an Adr(AA) stehenden InhaltDie Leistung eines Prozessors wird maßgeblich durch die Anzahl der Transistoren sowie durch die Wortbreite und den Prozessortakt bestimmt.Die Wortbreite legt fest, wie lang ein Maschinenwort des Prozessors sein kann, d. h. aus wie vielen Bits es maximal bestehen kann. Ausschlaggebend sind dabei folgende Werte: Arbeits- oder Datenregister: Die Wortbreite bestimmt die maximale Größe der verarbeitbaren Ganz- und Gleitkommazahlen. Datenbus: Die Wortbreite legt fest, wie viele Bits gleichzeitig aus dem Arbeitsspeicher gelesen werden können. Adressbus: Die Wortbreite legt die maximale Größe einer Speicheradresse, d. h. die maximale Größe des Arbeitsspeichers, fest. Steuerbus: Die Wortbreite legt die Art der Peripherieanschlüsse fest.Die Wortbreite dieser Einheiten stimmt im Normalfall überein, bei aktuellen PCs beträgt sie 32 bzw. 64 Bit.Das Taktsignal (englisch clock rate) wird besonders in der Werbung oft als Beurteilungskriterium für einen Prozessor präsentiert. Es wird allerdings nicht vom Prozessor selbst bestimmt, sondern ist ein Vielfaches des Mainboard-Grundtaktes. Dieser Multiplikator und der Grundtakt lässt sich bei einigen Mainboards manuell oder im BIOS einstellen, was als Über- oder Untertakten bezeichnet wird. Bei vielen Prozessoren ist der Multiplikator jedoch gesperrt, sodass er entweder gar nicht verändert werden kann oder nur bestimmte Werte zulässig sind (oft ist der Standardwert gleichzeitig der Maximalwert, sodass über den Multiplikator nur Untertakten möglich ist). Das Übertakten kann zu irreparablen Schäden an der Hardware führen.
CPU-Ausführungszeit = CPU-Taktzyklen × Taktzykluszeit Weiterhin gilt: Taktzykluszeit = 1 / Taktrate = Programmbefehle × CPI × TaktzykluszeitDie Geschwindigkeit des gesamten Systems ist jedoch auch von der Größe der Caches, des Arbeitsspeichers und anderen Faktoren abhängig.Einige Prozessoren haben die Möglichkeit die Taktrate zu erhöhen, bzw. zu verringern, wenn es nötig ist. Zum Beispiel, wenn hochauflösende Videos angeschaut oder Spiele gespielt werden, die hohe Anforderungen an das System stellen, oder umgekehrt der Prozessor nicht stark beansprucht wird.Im Bereich der Personal Computer ist die historisch gewachsene x86-Architektur weit verbreitet, wobei für eine genauere Diskussion dieser Thematik der entsprechende Artikel empfohlen wird.Interessanter und weniger bekannt ist der Einsatz von Embedded-Prozessoren und Mikrocontrollern beispielsweise in Motorsteuergeräten, Uhren, Druckern sowie einer Vielzahl elektronisch gesteuerter Geräte.Ein Prozessor besteht primär aus dem Steuer-/Leit- und dem Rechenwerk (ALU). Es gibt jedoch weitere Recheneinheiten, die zwar kein Steuer- bzw. Leitwerk enthalten, aber dennoch oft ebenfalls als Prozessor bezeichnet werden. Diese im Allgemeinen Koprozessor genannten Einheiten stellen in der Regel spezialisierte Funktionen zur Verfügung. Beispiele sind die Gleitkommaeinheit sowie Grafik- und Soundprozessoren. Zur Abgrenzung dieser Koprozessoren zu einem „echten“ Prozessor mit Steuer- und Rechenwerk wird der Begriff CPU (englisch central processing unit oder zu deutsch Hauptprozessor genutzt.Moderne Mikroprozessoren sind häufig als sogenannte Mehrkernprozessoren (Multi-Core-Prozessoren) ausgelegt.
Sie erlauben zusammen mit entsprechender Software eine weitere Steigerung der Gesamtrechenleistung ohne eine merkliche Erhöhung der Taktfrequenz (die bis in die 2000er Jahre übliche Technik die Rechenleistung eines Mikroprozessors zu erhöhen). Mehrkernprozessor bestehen aus mehreren voneinander unabhängigen Einheiten mit einem Rechen- und Steuerwerk, um die herum weitere Komponenten wie Cache und Memory Management Unit (MMU) angeordnet sind. Diese Einheiten werden als Prozessorkern (engl. „core“) bezeichnet. Im Sprachgebrauch sind die Begriffe Single-Core-Prozessor (Einzelkernprozessor), Dual-Core-, Triple-Core-, Quad-Core-, Hexa-Core-Prozessor (Sechskernprozessor) und Octa-Core-Prozessor (Achtkernprozessor) gebräuchlich. Da die Kerne eigenständige Prozessoren sind, werden die einzelnen Kerne häufig auch als CPU bezeichnet. Diese Bezeichnung „CPU“ wird synonym zu „Core“ genutzt, beispielsweise um in Mehrkernprozessoren oder System-on-a-Chip (SoC) mit weiteren integrierten Einheiten, z. B. einem Grafikprozessor (GPU), die Kerne mit Steuer- und Rechenwerk von den anderen Einheiten zu unterscheiden, siehe u. a. Accelerated Processing Unit (APU).Die klassische Einteilung, dass ein Steuerwerk und eine ALU als ein CPU, Kern bzw. Prozessor bezeichnet werden, verschwimmt zunehmend. Heutige Prozessoren (auch Einkernprozessoren) besitzen oft Steuerwerke, die jeweils mehrere Hardware-Threads verwalten (Multi-/Hyper-Threading); das Betriebssystem „sieht“ mehr Prozessorkerne, als tatsächlich (vollwertige) Steuerwerke vorhanden sind. Außerdem betreibt ein Steuerwerk oft mehrere ALUs sowie noch weitere Baugruppen wie z. B. Gleitkomma-Recheneinheit, Vektoreinheit (siehe auch AltiVec, SSE) oder eine Kryptographie-Einheit. Umgekehrt müssen sich manchmal mehrere Steuerwerke diese Spezial-Recheneinheiten teilen, was eine eindeutige Zuordnung verhindert.Erste Erwähnungen des Begriffes CPU gehen in die Anfänge der 1950er Jahre zurück. So wurde in einer Broschüre von IBM (705 EDPM) von 1955 der Begriff „Central Processing Unit“ zuerst ausgeschrieben, später mit der Abkürzung CPU in Klammern ergänzt und danach nur noch in seiner Kurzform verwendet.
Ältere IBM-Broschüren verwenden den Begriff nicht, so z. B. die Broschüre „Magnetic Cores for Memory in Microseconds in a Great New IBM Electronic Data Processing Machine for Business“ von 1954, in der zwar ebenfalls die IBM 705 dargestellt wird, an den entsprechenden Stellen jedoch lediglich von „data processing“ die Rede ist.Der Begriff CPU wird umgangssprachlich auch in anderem Kontext für Zentraleinheit (ZE) benutzt, hierbei kann dies für einen zentralen Hauptrechner (ein kompletter Computer) stehen, an dem einzelne Terminal-Arbeitsstationen angeschlossen sind. Teilweise wird der Begriff auch als Metapher benutzt, bei Computerspielen zum Beispiel als „Ein Spiel gegen die CPU“.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу