Muography. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Muography - Группа авторов страница 31
ACKNOWLEDGEMENTS
The authors would like to acknowledge Hideaki Aoki of Ike-kankou for collaborating on our study. We also thank Masato Koyama of Shizuoka University and Yusuke Suzuki for their discussions regarding Omuroyama volcano. This work was supported by JSPS KAKENHI Grant Numbers 19H01988, Izu Peninsula Geopark Academic Research Grant in 2018, the joint research program of the Institute of Materials and Systems for Sustainability at Nagoya University in 2017-2020, and JSPS Fellowship (DC2, 19J13805).
REFERENCES
1 Ambrosino, F., Anastasio, A., Bross, A., Béné, S., Boivin, P., Bonechi, L., et al. (2015). Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors. Journal of Geophysical Research Solid Earth, 120, 7290–7307. https://doi.org/10.1002/2015JB011969
2 Barnoud, A., Cayol, V., Lelièvre, P. G., Portal, A., Labazuy, P., Boivin, P., et al. (2021). Robust Bayesian joint inversion of gravimetric and muographic data for the density imaging of the Puy de Dôme Volcano (France). Frontiers in Earth Science, 8, 575842. https://doi.org/10.3389/feart.2020.575842
3 Davis, K., & Oldenburg, D. W. (2012). Joint 3D inversion of muon tomography and gravity data to recover density. ASEG Extended Abstracts, 1, 1–4. https://doi.org/10.1071/ASEG2012ab172
4 Deans, S. R. (2007). The Radon Transform and Some of Its Applications. Courier Corporation. 304 pp.
5 Feldkamp, L. A., Davis L. C., & Kress J. W. (1984). Practical cone‐beam algorithm. Journal of the Optical Society of America, A1, 612–619. https://doi.org/10.1364/JOSAA.1.000612
6 Groom, D. E., Mokhov, N. V., & Striganov, S. I. (2001). Muon stopping power and range tables 10 MeV–100 TeV. Atomic Data and Nuclear Data Tables, 78, 183–356. https://doi.org/10.1006/adnd.2001.0861
7 Honda, M., Kajita, T., Kasahara, K., & Midorikawa, S. (2004). New calculation of the atmospheric neutrino flux in a three‐dimensional scheme. Physical Review D, 70, 043008. https://dx.doi.org/10.1103/PhysRevD.70.043008
8 Jourde, K., Gibert, D., Marteau, J., de Bremond d’Ars, J., Gardien, S., Girerd, C., et al. (2013). Experimental detection of upward going cosmic particles and consequences for correction of density radiography of volcanoes. Geophysical Research Letters, 40, 6334–6339. https://doi.org/10.1002/2013GL058357
9 Jourde, K., Gibert, D., & Marteau, J. (2015). Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies. Geoscientific Instrumentation, Methods and Data Systems, 4, 177–188. https://doi.org/10.5194/gi‐4‐177‐2015
10 Jourde, K., Gibert, D., Marteau, J., de Bremond d’Ars, J., & Komorowski, J.‐C. (2016). Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano. Scientific Reports, 6, 33406. https://doi.org/10.1038/srep33406
11 Kolehmainen, V., Lassas, M., & Siltanen, S. (2008). Limited data X‐ray tomography using nonlinear evolution equations. SIAM Journal on Scientific Computing, 30(3), 1413–1429. https://doi.org/10.1137/050622791
12 Koyano, Y., Hayakawa, Y., & Machida, H. (1996). Eruption of Omuroyama in the Eastern Izu monogenetic volcanic region about 5000 years ago. Journal of Geography, 105(4) 475–484. (in Japanese) https://doi.org/10.18940/kazan.48.2_215
13 Morishima, K., Kuno, M., Nishio, A., Kitagawa, N., Manabe, Y., Moto, M., et al. (2017). Discovery of a big void in Khufu’s Pyramid by observation of cosmic‐ray muons. Nature, 552, 386–390. https://doi.org/10.1038/nature24647
14 Nagahara, S., & Miyamoto, S. (2018). Feasibility of three‐dimensional density tomography using dozens of muon radiographies and filtered back projection for volcanoes. Geoscientific Instrumentation, Methods and Data Systems, 7, 307–316. https://doi.org/10.5194/gi‐7‐307‐2018
15 Nishiyama, R., Tanaka, Y., Okubo, S., Oshima, H., Tanaka, H. K. M., & Maekawa, T. (2014a). Integrated processing of muon radiography and gravity anomaly data toward the realization of high‐resolution 3‐D density structural analysis of volcanoes: Case study of Showa–Shinzan Lava Dome, Usu, Japan. Journal of Geophysical Research Solid Earth, 119, 699–710. https://doi.org/10.1002/2013JB010234
16 Nishiyama, R., Miyamoto, S., & Naganawa, N. (2014b). Experimental study of source of background noise in muon radiography using emulsion film detectors. Geoscientific Instrumentation Methods and Data Systems, 3, 29–39. https://doi.org/10.5194/gi‐3‐29‐2014
17 Nishiyama, R., Taketa, A., Miyamoto, S., & Kasahara, K. (2016). Monte Carlo simulation for background study of geophysical inspection with cosmic‐ray muons. Geophysical Journal International, 206, 2, 1039–1050. https://doi.org/10.1093/gji/ggw191
18 Nishiyama, R., Miyamoto, S., Okubo, S., Oshima, H., & Maekawa T. (2017). 3D density modeling with gravity and muon‐radiographic observations in Showa–Shinzan lava dome, Usu, Japan. Pure and Applied Geophysics, 174, 1061–1070. https://doi.org/10.1007/s00024‐016‐1430‐9
19 Oláh, L., Tanaka, H. K. M., Ohminato, T., & Varga, D. (2018). High‐definition and low‐noise muography of the Sakurajima volcano with gaseous tracking detectors. Scientific Reports, 8, 3207. https://doi.org/10.1038/s41598‐018‐21423‐9
20 Ramachandran, G. N., & Lakshminarayanan, A. V. (1971). Three‐dimensional reconstruction from radiographs and electron micrographs. Proceedings of the National Academy of Sciences of the United States of America, 68(9), 2236–2240. https://doi.org/10.1073/pnas.68.9.2236
21 Rosas‐Carbajal, M., Jourde, K., Marteau, J., Deroussi, S., Komorowski, J. C., & Gibert, D. (2017). Three‐dimensional density structure of La Soufrière