Muography. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Muography - Группа авторов страница 44
8 Corradino, C., Ganci, G., Cappello, A., Bilotta, G., Hérault, A., & Del Negro, C. (2019). Mapping recent lava flows at Mount Etna using multispectral Sentinel‐2 images and machine learning techniques. Remote Sensing, 11, 1916. https://doi.org/10.3390/rs11161916
9 D’Alessandro, R., Ambrosino, F., Baccani, G., Bonechi, L., Bongi, M., Caputo, A, et al. (2019). Volcanoes in Italy and the role of muon radiography. Philosophical Transactions of the Royal Society A, 377, 20180050. https://doi.org/10.1098/rsta.2018.0050
10 Davis, K., & Oldenburg, D. W. (2012). Joint 3D of muon tomography and gravity data to recover density. ASEG Extended Abstracts, 1, 1–4. https://doi.org/10.1071/ASEG2012ab172
11 Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist‐level classification of skin cancer with deep neural networks. Nature, 542, 115–118. https://doi.org/10.1038/nature21056
12 Falsaperla, S., Graziani, S., Nunnari, G., & Spampinato, S. (1996). Automatic classification of volcanic earthquakes by using Multi‐Layered neural networks. Natural Hazards, 13, 205–228. https://doi.org/10.1007/BF00215816
13 Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
14 Gaddes, M. E., Hooper, A., & Bagnardi, M. (2019). Using machine learning to automatically detect volcanic unrest in a time series of interferograms. Journal of Geophysical Research: Solid Earth, 124, 12304–12322. https://doi.org/10.1029/2019JB017519
15 Geller, R. J. (1997). Earthquake prediction: a critical review. Geophysical Journal International, 131, 425–450. https://doi.org/10.1111/j.1365‐246X.1997.tb06588.x
16 Géron, A. (2019). Hands‐on Machine Learning with Scikit‐Learn, Keras & TensorFlow. O’Reilly Media, Inc., Sebastopol, CA.
17 Gluyas, J., Thompson, L., Allen, D., Benton, C., Chadwick, P., Clark, S., et al. (2019). Passive, continuous monitoring of carbon dioxide geostorage using muon tomography. Philosophical Transactions of the Royal Society A, 377, 20180059. https://doi.org/10.1098/rsta.2018.0059
18 Goh, G. B., Hodas, N. O., & Vishnu, A. (2017). Deep learning for computational chemistry. Journal of Computational Chemistry, 38, 1291–1307. https://doi.org/10.1002/jcc.24764
19 Guardincerri, E., Rowe, C., Schultz‐Fellenz, E., Roy, M., George, N., Morris, C., et al. (2017). 3D cosmic ray muon tomography from an underground tunnel. Pure and Applied Geophysics, 174, 2133–2141. https://doi.org/10.1007/s00024-017-1526-x
20 Guest, D., Cranmer, K., & Whiteson, D. (2018). Deep learning and its application to LHC Physics. Annual Review of Nuclear and Particle Science, 68, 161–181. https://doi.org/10.1146/annurev‐nucl‐101917‐021019
21 Hickey, J., Gottsmann, J., Nakamichi, H., & Iguchi, M. (2016). Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan. Scientific Reports, 6, 32691. https://doi.org/10.1038/srep32691
22 Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29, 82–97. https://doi.org/10.1109/MSP.2012.2205597
23 Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504–507. https://doi.org/10.1126/science.1127647
24 Hochreiter, S., & Schmidhuber, J. (1997). Long Short‐Term Memory. Neural Computation, 9, 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
25 Iguchi, M., Yakiwara, H., Tameguri, T., Hendrasto, M., & Hirabayashi, J. (2008). Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes. Journal of Volcanology and Geothermal Research, 178, 1–9. https://doi.org/10.1016/j.jvolgeores.2007.10.010
26 Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML’15: Proceedings of the 32nd International Conference on International Conference on Machine Learning, 37, 448–456.
27 Japan Meteorological Agency (2020). Sakurajima Euption Observation Tables. https://www.jma-net.go.jp/kagoshima/vol/kazan_top.html
28 Kazahaya, R., Shinohara, H., Mori, T., Iguchi, M., & Yokoo, A. (2016). Pre‐eruptive inflation caused by gas accumulation: Insight from detailed gas flux variation at Sakurajima volcano, Japan. Geophysical Research Letters, 43, 11219–11225. https://doi.org/10.1002/2016GL070727
29 Keras. (2020). Retrieved from https://keras.io/
30 Kingma, D. P., & Ba, L. J. (2015). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations. Retrieved from https://arxiv.org/abs/1412.6980v5
31 Korup, O., & Stolle, A. (2014). Landslide prediction from machine learning. Geology Today, 30, 26–33. https://doi.org/10.1111/gto.12034
32 Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. Communications of ACM, 60, 84–90. https://doi.org/10.1145/3065386
33 Langer, H., Falsaperla, S., & Thompson, G. (2003). Application of artificial neural networks for the classification of the seismic transients at Soufrière Hills volcano, Montserrat. Geophysical Research Letters, 30, 2090. https://doi.org/10.1029/2003GL018082
34 Lázaro Roche, I., Bitri, A., Bouteille, S., Decitre, J.‐B., Jourde, K., Gance, J., et al. (2019). Design, construction and in situ testing of a muon camera for Earth science and civil engineering applications. E3S Web Conference, 88, 01003. https://doi.org/10.1051/e3sconf/20198801003