Spatial Analysis. Kanti V. Mardia

Чтение книги онлайн.

Читать онлайн книгу Spatial Analysis - Kanti V. Mardia страница 14

Spatial Analysis - Kanti V. Mardia

Скачать книгу

simple kriging, ordinary kriging, universal kriging, and Bayesian kriging. In each case, there is a kriging predictor at every site, which depends on the data through a kriging vector. Combining the kriging predictor for all sites yields a kriging surface. The kriging variance describes the accuracy of the predictor at each site. Tables 7.1 and 7.2 set out the notation for kriging and Table 7.3 provides a comparison with some related notation used in machine learning.

       The transfer covariance matrix and transfer drift matrix are used to construct the kriging predictor (Section 7.6).

       Bordered covariance matrix. This is an matrix, Section 7.6.4, also used to construct the kriging predictor.

       Autoregression (AR) and related spatial models come in various forms in Chapter 4 including:– MA: Moving average (Section 4.3)– SAR: Simultaneous autoregression (Section 4.5)– CAR: Conditional autoregression (Section 4.6)– ICAR: Intrinsic CAR (Section 4.6.3)– QICAR: Quasi‐intrinsic CAR (Section 4.6.3)– UAR: Unilateral autoregression (Section 4.8.2)– QAR: Quadrant unilateral autoregression (Section 4.8.3)

       Types of matrix– Tensor product matrices (Section A.3.9)– Toeplitz, circulant, folded circulant matrices (Sections A.3.8 and A.10).– All circulant matrices in dimension have the same eigenvectors. These can be represented in complex coordinates by the unitary matrix or in real coordinates by the orthogonal matrix (Section A.7.2).

       Abbreviations and terminology for estimation and testing:– MLE: maximum likelihood estimation– AIC: Akaike information criterion– REML: restricted maximum likelihood– MINQUE: minimum quadratic unbiased estimation– GLS: generalized least squares– OLS: ordinary least squares– PMSE: prediction mean squared error for a kriging predictor– profile likelihood– likelihood ratio test– Vecchia approximation to the likelihood– moment estimation– Fisher information– composite likelihood

       Other abbreviations:– i.i.d.: independent and identically distributed– RF: random field– IRF: intrinsic random field– GP: Gaussian process = Gaussian random field– MRF: Markov random field– GMRF: Gaussian Markov random field– SLM: spatial linear model– FT: Fourier transform– IFT: inverse Fourier transform– DFT: discrete Fourier transform– DCT: discrete cosine transform– SPDE: stochastic partial differential equation– RKHS: reproducing kernel Hilbert space

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7R5wUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAoAQQBkAG8AYgBlACAA UABEAEYAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAA AAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZD TVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABD cHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jv b2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAA AABCY2tnT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBk b3ViQG/gAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAA AABCbGQgVW50RiNSbHQAAAAAAAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JE YXRhYm9vbAEAAAAAUGdQc2VudW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAA AAAAAAAAAFRvcCBVbnRGI1JsdAAAAAAAAAAAAAAAAFNjbCBV

Скачать книгу