Sustainable Solutions for Environmental Pollution, Volume 2. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Sustainable Solutions for Environmental Pollution, Volume 2 - Группа авторов страница 20

Sustainable Solutions for Environmental Pollution, Volume 2 - Группа авторов

Скачать книгу

and domestic wastewater is the main source of organic compounds such as halogenated aromatic compounds, BTEX compounds (benzene, ethyl-benzene, toluene, and three isomers of xylene), pharmaceuticals (e.g., antibiotics, hormones, cardiovascular drugs, antidepressants, anti-epileptics, and anti-cancer drugs) or personal care products (Gasperi et al., 2014; Becouze-Lareure et al., 2019). The presence of antibiotics can affect many aquatic species and generate the appearance or maintenance of antibiotic-resistant species. By phytodegradation macrophytes are able to metabolize contaminants (Black, 1995; Ansari et al., 2020). Microorganisms around plant roots play a significant role in organic pollutant biodegradation during rhizoremediation process (Zhang et al., 2014a). The presence of such active molecules can affect the plant rhizosphere and thus compromise the phytoremediation potential in CWs. Urban storm water runoff contains unburned hydrocarbon residues and combustion products such as PAHs (Gasperi et al., 2014). Bioremediation can be used as an alternative to physical and chemical methods taking advantage of the presence of natural ability of certain microbes to degrade hydrocarbons (El-Mufleh et al., 2014). Bioremediation can be achieved by biostimulation or bioaugmentation by adding microorganisms in the polluted environment (Amer et al., 2015). Degradation of the aromatic cycles requires their opening by oxidation. Degradation of PAHs involves enzymes such as dioxygenase, peroxidizes, and cytochrome P450 monooxygenases (Gaur et al., 2018). Nonspecific oxidoreductases emit free radicals oxidizing aromatic cycles by oxygen transferring, and cleave aromatic cycles, allowing then enzymatic degradation by bacteria (Cota-Ruiz et al., 2019).

      Plant uptake plays a dominant role in the elimination of clofibric acid and caffeine, and remains significant in the case of ibuprofen. Carbamazepine and MCPA (an herbicide) are relatively recalcitrant to all removal processes, although in hydroponic systems plant uptake accounts for half or more of the limited removal observed for these compounds (Zhang et al., 2014a). Using of mutual beneficial combination of plants and bacteria can overcome this obstacle. Plant-microbe partnership with soft rush (Juncus effuses) and Indian shot (Canna indica) can eliminate more than 80% for certain macrolides (Tai et al., 2017). Obviously, the elimination rates of biologically active molecules decrease as their concentration increases. Their concentration remain high, up to a concentration of a few µg/L. Microbes (rhizo- and endophytes) in this type of partnership not only directly degrade emerging pollutants but also accelerate plant growth by producing growth hormones and thus stimulate the bioremediation potential of CWs (Arslan et al., 2017; Nguyen et al., 2019a).

      In a comparative study of the four major types of CWs, Ilyas and van Hullebusch (2020) noted better removal of 29 pharmaceuticals and 19 transformation products in hybrid systems, followed in descending order by VSSF-CWs, HSSF-CWs, and FSF-CWs. The coexistence of aerobic and anaerobic conditions and a longer HRT in hybrid CWs could explain the relatively good removal of diclofenac, acetaminophen, SMX, sulfapyridine, trimethoprim, and atenolol (Ilyas and van Hullebusch, 2020).

      The bioconcentration factors are generally higher in the floating macrophyte species than in the submerged species. The more hydrophilic pharmaceuticals such as carbamazepine and diphenhydramine are more easily absorbed and transferred to leaf tissues (Pi et al., 2017). VSSF-CWs seem more efficiently remove highly biodegradable pharmaceuticals, compared to HSSF-CWs, probably because they enhance aerobic microbial biodegradation due to a better oxygenation (Zhang et al., 2014a). Xiong et al. (2018) summarize several novel approaches to the bioremediation of pharmaceuticals through the use of microalgae, including the construction of microbial consortia, acclimatization, and co-metabolism (Xiong et al., 2018)

      As in the case of nitrogen pollution removal, different types of CWs combined in hybrid systems, to exploit the specific advantages of each system and to provide aerobic and anaerobic conditions at the same time, are more effective. Highly biodegradable pharmaceuticals, such as ibuprofen, ketoprofen, and salicylic acid, show high abatement rates (87%, 99%, 81%, and 97%, respectively) in hybrid systems with a large redox gradient (Zhang et al., 2014a).

      1.10.1 Introduction

      As presented above, microorganism capacities

Скачать книгу