Biodiesel Production. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biodiesel Production - Группа авторов страница 29

Biodiesel Production - Группа авторов

Скачать книгу

place as both glycerides and FFAs are converted to esters [29]. They also offer the following advantages:

       A low alcohol‐to‐oil ratio is needed, with deemulsification conferring reusability of enzymes.

       Low product inhibition and reacting temperature, with easy separation in case of heterogeneous immobilized enzymes.

       Single‐step conversion with appreciable yields and are insensitive to moisture exposure.

      However, they do require far longer durations to complete conversion, and since enzymes are very temperature sensitive, the reaction must be closely monitored. Another problem associated with them is their high costs as well as limited reusability due to structural denaturation and moderate conversion efficiencies compared to acid‐ or base‐catalyzed systems [30, 31]. Lipase is the most common enzyme used and is obtained from animals, plants, or microbes, and must not be stereospecific for maximum conversion efficiency. Bacterial and fungal lipases (example being Novozym 435 obtained from Candida antarctica or other enzymes extracted from sources such as Penicillium spp., Rhizopus spp., and Aspergillus niger) used can show maximum yield up to 90%, when operated between 30 and 50 °C for anywhere between 8 and 90 h depending on feedstock [2]. The variety of studies reported by researchers are numerous; a select few of which have been summarily presented in Table 2.2. However, Nelson et al. reported that polar alcohols tend to inactivate enzymes much faster than nonpolar alcohols [28].

      2.5.1.4 Other Novel Heterogeneous Catalysts

      There exist quite a number of reports by researchers on successful conversion of oil into biodiesel using catalysts that do not fall under the general spectrum of acids, bases, or enzymes. Mostly heterogeneous in nature, they are usually insensitive to the presence of FFAs and can convert them as well into esters (Table 2.2). The preparation strategies for each catalyst, therefore, vary greatly as they can be the source material itself (albeit modified to a certain extent) [32], a chemical compound that exists naturally as a salt [33], or other inert supports (carbonaceous or siliceous) that have been doped with transition metals, which are able to catalyze the transition much more efficiently [15, 26]. The form of doping in the last category is usually by the use of analytical grade salts containing the metal ion, which gets impregnated, leaving the anion to be washed off. Natural waste materials containing such elements can also be processed and used as a cost‐efficient alternative (such as cow bones for calcium doping).

      2.5.1.5 Two‐Step Catalyzed Process

      Many researchers opt for this method, in which acid esterification is used for pretreating the oil in order to make it suitable for base‐catalyzed conversion before performing alkali‐catalyzed transesterification, which can completely convert the glycerides into esters, since bases are sensitive to high FFAs (owing to saponification) as well as moisture (owing to hydrolysis) [27]. The process can comprise of either esterification–transesterification steps or hydrolysis and esterification steps (Table 2.2) [34]. Hydrolysis combined with esterification is comparatively more wasteful as generation of FFAs is an energy‐intensive process since high temperatures (exceeding 300 °C) and pressure (exceeding 10 MPa) are required. In the two‐step catalyzed process involving esterification and transesterification, acid catalysts remove almost all of the FFAs through conversion to esters and water, which can be then purified and dried prior to using base catalysts, which convert the glycerides into esters and glycerol [22]. The glycerol and excess alcohol can be removed through washing or by ultracentrifugation before being tested for suitability as fuel. As mentioned in Section 2.4, nonpolar alcohols result in better biodiesel yield compared with polar alcohols, and, thus, they hold great potential for use in biodiesel production [1, 6].

      2.5.2 Modern Conversion Approaches

      2.5.2.1 Supercritical Fluids

Скачать книгу

Supercritical fluid‐assisted biodiesel production
Feedstock Solvent (+ catalyst/cosolvent) Reaction temperature (°C) Reaction pressure (MPa) Alcohol:oil ratio Residence time (min) Yield (%) References