DNA Origami. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу DNA Origami - Группа авторов страница 35

DNA Origami - Группа авторов

Скачать книгу

3.5a).

      This dynamic feature revealed by HS‐AFM provided a clue that allowed a chequerboard‐like pattern to be derived from the lattice structure via sequential self‐assembly (Figure 3.5b). To realize this pattern derivation, a two‐dimensional lattice wherein every other cavity has polyT strands was first self‐assembled from two types of cross‐shaped DNA origamis. Then, the square origami carrying polyA strands at its four corners was loaded onto the preassembled lattice. The polyA‐modified squares that entered correct positions (cavities with 8T strands) could be docked in the cavity by sticky‐ended cohesion despite insufficient adsorption onto the membrane surface, whereas those that entered false positions (cavities without 8T linkers) could desorb from the cavity. Hence, the square origami would be finally incorporated only in the correct positions to make a chequerboard‐like pattern as demonstrated in HS‐AFM images (Figure 3.5c).

Schematic illustration of placing square-shaped DNA origami into lipid bilayer-supported 2D lattices.

      Source: Suzuki et al. [67]/with permission from John Wiley & Sons, Inc.

Schematic illustration of photoresponsive reversible assembly of a hexagonal DNA origami dimer.

      Source: Suzuki et al [72]/with permission from American Chemical Society.

      The second round of the UV irradiation from 64 seconds again resulted in the dissociation into two monomers (Figure 3.6e). Similar to the result of the first UV irradiation, the right hexagon (hexagon in the face‐up orientation) stayed at the almost same position, while the other one (in the face‐down orientation) was relatively mobile on the surface and diffused away. This set of results clearly demonstrate photo‐controlled monomerization and dimerization at the single‐molecule level.

      This chapter provided an overview of how time‐lapse AFM techniques have been applied to study mechanically functional DNA origami nanodevices and 2D self‐assembly of DNA origami arrays. Most nanodevices introduced here are designed to respond ions and photostimuli. In addition to the development of these stimuli‐responsive DNA origami structures, attempts to drive DNA nanodevices by electric [73, 74] or magnetic fields [75] are also progressing. Many of these devices are composed of a stator part that is fixed onto a glass surface and a movable arm whose orientation or angle against the stator is controlled by electric or magnetic fields. Rotational or hinge‐like movements of arms are generally monitored using a single‐molecule fluorescence imaging technique, such as a total internal reflection fluorescence (TIRF) microscopy. However, the observed behavior of the fluorescent spot does not always provide direct information on how the entire single nanodevices actually behave. Therefore, the next advancement of this technology would grow out of the integration of HS‐AFM and fluorescence imaging techniques. This direction has now progressed from possibility to actuality thanks to the emergence of HS‐AFM combined with various fluorescence microscopies, such as inverted fluorescence microscopy [76], confocal laser scanning microscopy [77], and TIRF microscopy [78]. It is hoped that both structural changes in individual nanodevices or morphological changes of self‐assembly systems will be correlated with nano‐to‐meso scale dynamics of their components. The combination of HS‐AFM with microfluidic devices and those that exploit electric magnetic manipulation is also a fascinating

Скачать книгу