Handbook on Intelligent Healthcare Analytics. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Handbook on Intelligent Healthcare Analytics - Группа авторов страница 11

Handbook on Intelligent Healthcare Analytics - Группа авторов

Скачать книгу

learning of knowledge from numerous sources of information, non-linear incorporation of fragmented knowledge, and automatic demand-based knowledge navigation. The project aims to provide petabytes in the defined application domains with data and information tools. Knowledge-based engineering (KBE) frameworks are based on the working standards and core features with a special focus on their built-in programming language. This language is the key element of a KBE framework and promotes the development and re-use of the design skills necessary to model complex engineering goods. This facility allows for the automation of the process preparation step of multidisciplinary research (MDA), which is particularly important for this novel. The key types of design rules to be implemented in the implementation of the KBE are listed, and several examples illustrating the significant differences between the KBE and the traditional CAD approaches are presented. This chapter discusses KBE principles and how this technology will facilitate and enable the multidisciplinary optimization (MDO) of the design of complex products. This chapter discusses their reach goes beyond existing CAD structure constraints and other practical parametric and space exploration approaches. There is a discussion of the concept of KBE and its usage in architecture that supports the use of MDO. Finally, this chapter discusses on the key measures and latest trends in the development of KBE.

      1.1.1 Online Learning and Fragmented Learning Modeling

      Centered on the characteristics of multiple data sets, the key to a multisource retrieval of information is fragmented data processing [3]. To create global awareness, local information pieces from individual data points can be merged. Present online learning algorithms often use linear fitting for the retrieval of dispersed knowledge from local data sources [4]. In the case of fragmented knowledge fusion, though, linear fitting is not successful and may even create problems of overfitting. Several studies are ongoing to improve coherence in the processing and interpretation of fragmented knowledge [6], and the advantage of machine learning for large data interpreting is that most samples are efficient, thus eliminating the possibility of over-adjustment at any rate [7]. Big data innovation acquires knowledge mostly from user-produced content, as opposed to traditional information engineering’s focused on domain experience, in addition to authoritative sources of knowledge, such as technical knowledge bases. The content created by users provides a new type of database that could be used as a main human information provider as well as to help solve the problem of bottlenecks in traditional knowledge engineering. The information created by the consumer is broad and heterogeneous which leads to storage and indexing complexities [5], and the knowledge base should be able to build and disseminate itself to establish realistic models of data relations. For instance, for a range of reasons, clinical findings in survey samples can be incomplete and unreliable, and preprocessing is needed to improve analytical data [8].

      The purpose of gathering information is to create strategies and tools that make it as simple and effective as possible to gather and verify a professional’s expertise. Experts tend to be critical and busy individuals, and the techniques followed would also minimize the time expended on knowledge collection sessions by each expert. The key form of the knowledge-based approach is an expert procedure, which is intended to mimic an expert’s thinking processes. Typical examples of specialist systems include bacterial disease control, mining advice, and electronic circuit design assessment. It currently refers to the planning, administration, and construction of a system centered on expertise. It operates in a broad variety of aspects of computer technology, including data baselines, data collection, advanced networks, decision-making processes, and geographic knowledge systems. This is a big part of software computing. Wisdom engineering also falls into connection with mathematical reasoning as well as a strong concern with cognitive science and social-cognitive engineering, where intelligence is generated by socio-cognitive aggregates (mainly human beings) and structured according to the way humans thought and logic operates. Since then, information engineering has been an essential technology for knowledge incorporation. In the end, the exponentially increasing World Wide Web generates a growing market for improved usage of knowledge and technological advancement.

      1.2.1

Скачать книгу