Interventional Cardiology. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Interventional Cardiology - Группа авторов страница 123

Interventional Cardiology - Группа авторов

Скачать книгу

Skouri HN, Dec GW, Friedrich MG, Cooper LT. Noninvasive imaging in myocarditis. J Am Coll Cardiol. 2006; 48(10):2085–93.

      60 60 Friedrich MG, Sechtem U, Schulz‐Menger J, et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol. 2009; 53(17):1475–87.

      61 61 Anderson LJ, Westwood MA, Prescott E, et al. Development of thalassaemic iron overload cardiomyopathy despite low liver iron levels and meticulous compliance to desferrioxamine. Acta Haematol. 2006; 115(1–2):106–8.

      62 62 Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non‐compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005; 46(1):101–5.

      63 63 Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010; 31(7):806–14.

      64 64 Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005; 111(2):186–93.

      65 65 Taylor AM, Thorne SA, Rubens MB, et al. Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and x‐ray coronary angiography. Circulation. 2000; 101(14):1670–8.

      66 66 McConnell MV, Ganz P, Selwyn AP, et al. Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation. 1995; 92(11):3158–62.

      67 67 Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of Valsalva, A not‐so‐minor congenital anomaly. Circulation. 1974; 50(4):780–7.

      68 68 Levin DC, Fellows KE, Abrams HL. Hemodynamically significant primary anomalies of the coronary arteries. Angiographic aspects. Circulation. 1978; 58(1):25–34.

      69 69 Akagi T, Rose V, Benson LN, Newman A, Freedom RM. Outcome of coronary artery aneurysms after Kawasaki disease. J Pediatr. 1992; 121(5 Pt 1):689–94.

      70 70 Mavrogeni S, Papadopoulos G, Douskou M, et al. Magnetic resonance angiography is equivalent to X‐ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease. J Am Coll Cardiol. 2004; 43(4):649–52.

      71 71 Mavrogeni S, Papadopoulos G, Douskou M, et al. Magnetic resonance angiography, function and viability evaluation in patients with Kawasaki disease. J Cardiovasc Magn Reson. 2006; 8(3):493–8.

      72 72 Hajhosseiny R, Bustin A, Munoz C, et al. Coronary Magnetic Resonance Angiography: Technical Innovations Leading Us to the Promised Land? JACC Cardiovasc Imaging. 2020.

      73 73 Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001; 345(26):1863–9.

      74 74 Kato S, Kitagawa K, Ishida N, et al. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol. 2010; 56(12):983–91.

      75 75 Langerak SE, Vliegen HW, Jukema JW, et al. Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation. 2003; 107(11):1502–8.

      76 76 Kwong RY, Ge Y, Steel K, et al. Cardiac Magnetic Resonance Stress Perfusion Imaging for Evaluation of Patients With Chest Pain. J Am Coll Cardiol. 2019; 74(14):1741–55.

      77 77 Al‐Sabeq B, Nabi F, Shah DJ. Assessment of myocardial viability by cardiac MRI. Curr Opin Cardiol. 2019; 34(5):502–9.

      78 78 Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013; 128(16):1810–52.

      79 79 Cosyns B, Plein S, Nihoyanopoulos P, et al. European Association of Cardiovascular Imaging (EACVI) position paper: Multimodality imaging in pericardial disease. Eur Heart J Cardiovasc Imaging. 2015; 16(1):12–31.

      80 80 Partington SL, Valente AM. Cardiac magnetic resonance in adults with congenital heart disease. Methodist Debakey Cardiovasc J. 2013; 9(3):156–62.

      81 81 Hundley WG, Li HF, Lange RA, et al. Assessment of left‐to‐right intracardiac shunting by velocity‐encoded, phase‐difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques. Circulation. 1995; 91(12):2955–60.

      82 82 Beerbaum P, Körperich H, Barth P, et al. Noninvasive quantification of left‐to‐right shunt in pediatric patients: phase‐contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001; 103(20):2476–82.

      83 83 Prakash A, Powell AJ, Geva T. Multimodality noninvasive imaging for assessment of congenital heart disease. Circ Cardiovasc Imaging. 2010; 3(1):112–25.

      84 84 Carminati M, Agnifili M, Arcidiacono C, et al. Role of imaging in interventions on structural heart disease. Expert Rev Cardiovasc Ther. 2013; 11(12):1659–76.

      85 85 Eicken A, Ewert P, Hager A, et al. Percutaneous pulmonary valve implantation: two‐centre experience with more than 100 patients. Eur Heart J. 2011; 32(10):1260–5.

      86 86 Zahn EM, Hellenbrand WE, Lock JE, McElhinney DB. Implantation of the melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit early results from the u.s. Clinical trial. J Am Coll Cardiol. 2009; 54(18):1722–9.

      87 87 Suzuki J, Caputo GR, Kondo C, Higgins CB. Cine MR imaging of valvular heart disease: display and imaging parameters affect the size of the signal void caused by valvular regurgitation. AJR Am J Roentgenol. 1990; 155(4):723–7.

      88 88 Mathew RC, Löffler AI, Salerno M. Role of Cardiac Magnetic Resonance Imaging in Valvular Heart Disease: Diagnosis, Assessment, and Management. Curr Cardiol Rep. 2018; 20(11):119.

      89 89 Kilner PJ, Manzara CC, Mohiaddin RH, et al. Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation. 1993; 87(4):1239–48.

      90 90 Loubeyre P, Delignette A, Bonefoy L, et al. Magnetic resonance imaging evaluation of the ascending aorta after graft‐inclusion surgery: comparison between an ultrafast contrast‐enhanced MR sequence and conventional cine‐MRI. J Magn Reson Imaging. 1996; 6(3):478–83.

      91 91 Fattori R, Nienaber CA. MRI of acute and chronic aortic pathology: pre‐operative and postoperative evaluation. J Magn Reson Imaging. 1999; 10(5):741–50.

      92 92 Nielsen JC, Powell AJ, Gauvreau K, et al. Magnetic resonance imaging predictors of coarctation severity. Circulation. 2005; 111(5):622–8.

      93 93 Didier D, Saint‐Martin C, Lapierre C, et al. Coarctation of the aorta: pre and postoperative evaluation with MRI and MR angiography; correlation with echocardiography and surgery. Int J Cardiovasc Imaging. 2006; 22(3–4):457–75.

      94 94 Muzzarelli S, Meadows AK, Ordovas KG, et al. Usefulness of cardiovascular magnetic resonance imaging to predict the need for intervention in patients with coarctation of the aorta. Am J Cardiol. 2012; 109(6):861–5.

      95 95 Takahashi EA, Kinsman KA, Neidert NB, Young PM. Guiding peripheral arterial disease management with magnetic resonance imaging. VASA. 2019; 48(3):217–22.

      96 96 Nael K, Villablanca JP, Saleh R, et al. Contrast‐enhanced MR angiography at 3T in

Скачать книгу